1887

Abstract

The aspartokinase II() operon of consists of two in-phase overlapping genes that encode the two subunits of the lysine-sensitive isoenzyme of aspartokinase (ATP:-aspartate 4-phosphotransferase, EC 2.7.2.4). Transduction mapping of the operon, inactivated by recombinational insertion of a marker, indicates a chromosomal location (about 253°) between and is thus remote from , eliminating as a possible locus for the structural gene of aspartokinase II, but close to and . The nucleotide sequence of a 2 kb DNA fragment just upstream of the operon was determined and found to contain two open reading frames. The deduced amino acid sequence of the distal reading frame exhibits extensive homology with thioredoxin and that of the proximal one, which overlaps with the promoter, is homologous to the deduced product of the gene. Insertional mutagenesis of the proximal open reading frame led to a mitomycin-sensitive phenotype, consistent with a role in DNA repair. In conjunction with the data of M. Petricek, L. Rutberg & L. Hederstedt [ 61, 85–88] our results define the nucleotide sequence of an 8·8 kb segment of the chromosome near 253 ° and the following order of genes: -orfX--orfY-.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-135-11-2931
1989-11-01
2024-05-06
Loading full text...

Full text loading...

/deliver/fulltext/micro/135/11/mic-135-11-2931.html?itemId=/content/journal/micro/10.1099/00221287-135-11-2931&mimeType=html&fmt=ahah

References

  1. Bondaryk R. P., Paulus H. 1985; Cloning and structure of the gene for the subunits of aspartokinase II from Bacillus subtilis.. Journal of Biological Chemistry 260:585–591
    [Google Scholar]
  2. Chen N. Y., Paulus H. 1988; Mechanism of expression of the overlapping genes of Bacillus subtilis aspartokinase II.. Journal of Biological Chemistry 263:9526–9532
    [Google Scholar]
  3. Chen N. Y., Hu F. M., Paulus H. 1987; Nucleotide sequence of the overlapping genes for the subunits of Bacillus subtilis aspartokinase II and their control regions.. Journal of Biological Chemistry 262:8787–8798
    [Google Scholar]
  4. Cutting S., Mandelstam J. 1986; The nucleotide sequence and transcription during sporulation of the gerE gene of Bacillus subtilis.. Journal of General Microbiology 132:3013–3024
    [Google Scholar]
  5. Dedonder R. A., Lepesant J. A., Lepesant-Kejz-Larova J., Billault R., Steinmetz M., Kunst F. 1977; Construction of a kit of reference strains for rapid genetic mapping in Bacillus subtilis 168.. Applied and Environmental Microbiology 33:989–993
    [Google Scholar]
  6. Dubnau D., Goldthwaite C., Smith I., Marmur J. 1967; Genetic mapping in Bacillus subtilis.. Journal of Molecular Biology 27:163–185
    [Google Scholar]
  7. Ferrari F. A., Nguyen A., Lang D., Hoch J. A. 1983; Construction and properties of an integratable plasmid for Bacillus subtilis.. Journal of Bacteriology 154:1513–1515
    [Google Scholar]
  8. Hager P. W., Rabinowitz J. 1985; Transitional specificity in Bacillus subtilis.. In The Molecular Biology of the Bacilli, pp 1–32 Dubnau u. A. Edited by New York: Academic Press;
    [Google Scholar]
  9. Haldenwang W. G., Banner C.D.B., Ollington J. F., Losick R., Hoch J. A., O’Connor M. B., Sonenshein A. L. 1980; Mapping a cloned gene under sporulation control by insertion of a drug resistance marker into the Bacillus subtilis chromosome.. Journal of Bacteriology 142:90–98
    [Google Scholar]
  10. Hederstedt L., Magnusson K., Rutberg L. 1982; Reconstitution of succinate dehydrogenase in Bacillus subtilis by protoplast fusion.. Journal of Bacteriology 152:157–162
    [Google Scholar]
  11. Helmann J. D., Chamberlin M. J. 1988; Structure and function of bacterial sigma factors.. Annual Review of Biochemistry 57:839–872
    [Google Scholar]
  12. Holmgren A. 1968; Thioredoxin. 6. The amino acid sequence of the protein from Escherichia coli B.. European Journal of Biochemistry 6:475–484
    [Google Scholar]
  13. Magnusson K., Phillips M. K., Guest J. R., Rutberg L. 1986; Nucleotide sequence of the gene for cytochrome bsss of the Bacillus subtilis succinate dehydrogenase complex.. Journal of Bacteriology 166:1067–1071
    [Google Scholar]
  14. Mattioli R., Bazzicalupo M., Federici G., Gallori E., Polsinelli M. 1979; Characterization of mutants of Bacillus subtilis resistant to S-(2-aminoethyl)cysteine.. Journal of General Microbiology 114:223–225
    [Google Scholar]
  15. Munakata N. 1977; Mapping of the genes controlling excision repair of pyrimidine photoproducts in Bacillus subtilis.. Molecular and General Genetics 156:49–54
    [Google Scholar]
  16. Munakata N., Ikeda Y. 1966; Inactivation of transforming DNA by ultraviolet irradiation: a study with ultraviolet-sensitive mutants of Bacillus subtilis.. Mutation Research 7:133–139
    [Google Scholar]
  17. Ohne M., Rutberg B., Hoch J. A. 1973; Genetic and biochemical characterization of mutants of Bacillus subtilis defective in succinate dehydrogenase.. Journal of General Microbiology 115:738–745
    [Google Scholar]
  18. Osbourne M. S., Sonenshein A. L. 1980; Inhibition by lipiarmycin of bacteriophage growth in Bacillus subtilis.. Journal of Virology 33:945–953
    [Google Scholar]
  19. Paulus H. 1984; Regulation and structure of aspartokinase in the genus Bacillus.. Journal of Biosciences(Bangalore) 6:403–418
    [Google Scholar]
  20. Pearson W. R., Lipman D. J. 1988; Improved tools for biological sequence comparison.. Proceedings of the National Academy of Sciences of the United States of America 85:2444–2448
    [Google Scholar]
  21. Petricek M., Rutberg L., Hederstedt L. 1989; The structural gene for aspartokinase II in Bacillus subtilis is closely linked to the sdh operon.. FEMS Microbiology Letters 61:85–88
    [Google Scholar]
  22. Phillips M. K., Hederstedt L., Hasnain S., Rutberg L., Guest J. R. 1987; Nucleotide sequence encoding the flavoprotein and iron-sulfur protein subunits of the Bacillus subtilis PY79 succinate dehydrogenase complex.. Journal of Bacteriology 169:864–873
    [Google Scholar]
  23. Piggot P. J., Hoch J. A. 1985; Revised genetic linkage map of Bacillus subtilis.. Microbiological Reviews 49:158–179
    [Google Scholar]
  24. Sancar G. B., Sancar A., Rupp W. D. 1984; Sequences of the E. coli uvrC gene and protein.. Nucleic Acids Research 12:4593–4608
    [Google Scholar]
  25. Sanger F., Nicklen S., Coulson A.R:. 1977; DNA sequencing with chain-terminating inhibitors.. Proceedings of the National Academy of Sciences of the United States of America 74:5463–5467
    [Google Scholar]
  26. Tinoco I., Borer P. N., Dengler B., Levine M. D., Uhlenbeck O. C., Crothers D. M., Gralla J. 1973; Improved estimation of secondary structure in ribonucleic acids.. Nature New Biology 246:40–41
    [Google Scholar]
  27. Yeh E. C., Steinberg W. 1978; The effect of gene position, gene dosage and a regulatory mutation on the temporal sequence of enzyme synthesis accompanying outgrowth of Bacillus subtilis spores.. Molecular and General Genetics 158:287–296
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-135-11-2931
Loading
/content/journal/micro/10.1099/00221287-135-11-2931
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error