1887

Abstract

Carotenoid-overproducing mutants of Sp7, which contained about 100 times more carotenoids than the wild-type, were obtained after nitrosoguanidine mutagenesis. Growth studies with one of these mutants in oxygen-controlled batch and continuous cultures revealed a slightly improved oxygen tolerance of nitrogen fixation in the mutant as compared to the wild-type. The production of carotenoids was greatly enhanced by increasing the oxygen concentration under nitrogen-deficient conditions. Although nitrogen fixation was severely inhibited by increased oxygen concentrations, in both the mutant and the wild-type, the mutant showed significantly greater efficiency of nitrogen fixation at 12μm dissolved oxygen, and it fixed five times more total nitrogen than the wild-type under these conditions. In conclusion, high levels of carotenoids slightly enhanced the oxygen tolerance of under conditions of oxygen stress, but did not extend the optimum pO for nitrogen fixation to higher oxygen concentrations.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-134-9-2449
1988-09-01
2021-10-23
Loading full text...

Full text loading...

/deliver/fulltext/micro/134/9/mic-134-9-2449.html?itemId=/content/journal/micro/10.1099/00221287-134-9-2449&mimeType=html&fmt=ahah

References

  1. Abdel-Salam M.S., Klingmuller W. 1987; Transposon Tn5 mutagenesis in Azospirillum lipo- ferum: isolation of indole acetic acid mutants.. Molecular and General Genetics 210:165–170
    [Google Scholar]
  2. Adelberg E.A., Mandel M., Chen G.C.C. 1965; Optimal conditions for mutagenesis bN- methyl-N′-nitro-N-nitrosoguanidine in Escherichia coli K-12.. Biochemical and Biophysical Research Communications 18:788–795
    [Google Scholar]
  3. Albrecht S.L., Okon Y. 1980; Cultures of Azospirillum.. Methods in Enzymology 69:740–749
    [Google Scholar]
  4. Barak R., Nur I., Okon Y., Henis Y. 1982; Aerotactic response of Azospirillum brasilense.. Journal of Bacteriology 152:643–649
    [Google Scholar]
  5. Bergersen F.J. 180; Measurement of nitrogen fixation by direct means.. In Methods for Evaluating Biological Nitrogen Fixation pp. 65–110 Bergersen F.J. Edited by Toronto: Wiley;
    [Google Scholar]
  6. Bergersen F.J., Turner G.L. 1980; Properties of terminal oxidase systems of bacteroids from root nodules of soybean and cowpea and of N2-fixing bacteria grown in continuous culture.. Journal of General Microbiology 118:235–252
    [Google Scholar]
  7. Bothe H., Barbosa G., Dobereiner J. 1983; Nitrogen fixation and nitrate respiration of Azospirillum brasilense.. Zeitschrift fur Naturforschung 38c:571–577
    [Google Scholar]
  8. Britton G., Goodwin T.W. 1971; Biosynthesis of carotenoids.. Methods of Enzymology 18:654–701
    [Google Scholar]
  9. Burris R.H. 1974; Methodology.. In The Biology of Nitrogen Fixation pp. 3–42 Quispel A. Edited by Amsterdam: North Holland Publishing Co;
    [Google Scholar]
  10. Burton G.W., Ingold K.U. 1984; β-Carotene: an unusual type of lipid antioxidant.. Science 224:569–573
    [Google Scholar]
  11. Cerda-Olmedo E., Torres-Martinez S. 1979; Genetics and regulation of carotene biosynthesis.. Pure and Applied Chemistry 51:631–637
    [Google Scholar]
  12. Day J.M., Döbereiner J. 1976; Physiological aspects of N2-fixation by a Spirillum from Digitaria roots.. Soil Biology and Biochemistry 8:45–50
    [Google Scholar]
  13. Fawcett J.K., Scott J.E. 1960; A rapid and precise method for determination of urea.. Journal of Clinical Pathology 13:156–159
    [Google Scholar]
  14. Fu C., Knowles R. 1986; Oxygen tolerance of uptake hydrogenase in Azospirillum spp.. Canadian Journal of Microbiology 32:897–900
    [Google Scholar]
  15. Goldberg I., Nadler V., Hochman A. 1987; Mechanism of nitrogenase switch-off by oxygen.. Journal of Bacteriology 169:874–879
    [Google Scholar]
  16. Halliwell B., Gutteridge J.M.C. 1984; Oxygen toxicity, oxygen radicals, transition metals and disease.. Biochemical Journal 219:1–14
    [Google Scholar]
  17. Hartmann A., Burris R.H. 1987; Regulation of nitrogenase activity by oxygen in Azospirillum brasilense and Azospirillum lipoferum.. Journal of Bacteriology 169:944–948
    [Google Scholar]
  18. Hartmann A., Fusseder A., Klingmüller W. 1983; Mutants of Azospirillum affected in nitrogenfixation and auxin production.. In Azospirillum 11, Genetics, Physiology, Ecology (Experientia Supplementum) 48 pp. 78–88 Klingmuller W. Edited by Basel: Birkhauser-Verlag;
    [Google Scholar]
  19. Hartmann A., Fu H., Song S.-D., Burris R.H. 1985; Comparison of nitrogenase regulation in A. brasilense, A. lipoferum and A. amazonense.. In Azospirillum III, Genetics, Physiology, Ecology pp. 116–126 Klingmuller W. Edited by Berlin: Springer Verlag;
    [Google Scholar]
  20. Hochman A., Burris R.H. 1981; Effect of oxygen on acetylene reduction by photosynthetic bacteria.. Journal of Bacteriology 147:492–499
    [Google Scholar]
  21. Hochman A., Goldberg I., Nadler V., Hartmann A. 1987; The reversible inhibition of nitrogen fixation by oxygen.. In Inorganic Nitrogen Metabolism pp. 173–174 Ullrich W.R., Aparicio P.J., Syrett P.J., Castillo F. Edited by Berlin: Springer Verlag;
    [Google Scholar]
  22. Hurek T., Reinhold B., Fendrik I., Niemann E.-G. 1987; Root-zone-specific oxygen tolerance of Azospirillum spp. and diazotrophic rods closely associated with Kallar grass.. Applied and Environmental Microbiology 53:163–169
    [Google Scholar]
  23. Kloss M., Iwannek K.H., Fendrik I. 1983; Physiological properties of Azospirillum brasilense Sp7 in a malate limited chemostat.. Journal of General and Applied Microbiology 29:447–457
    [Google Scholar]
  24. Krieg N.R., Döbereiner J. 1984; Genus Azospirillum Tarrand, Krieg and Dobereiner 1979 79 AL (effective publication: Tarrand, Krieg and Dobereiner 1978 967).. In Bergey’s Manual of Systematic Bacteriology 213 pp. 94–104 Krieg N.R. Edited by Baltimore: Williams & Wilkins;
    [Google Scholar]
  25. Krieg N.R., Hoffman P.S. 1986; Microaero- phily and oxygen toxicity.. Annual Review of Microbiology 40:107–130
    [Google Scholar]
  26. Krinsky N.I. 1979; Carotenoid protection against oxidation.. Pure and Applied Chemistry 51:649–660
    [Google Scholar]
  27. Moore E.R.B., Norrod E.P., Jurtshuk P. 1984; superoxide dismutases of Azotobacter vine-landii and other aerobic, free-living nitrogen-fixing bacteria.. FEMS Microbiology Letters 24:261–265
    [Google Scholar]
  28. Nelson L.M., Knowles R. 1978; Effect of oxygen and nitrate on nitrogen fixation and denitrification by Azospirillum brasilense grown in continuous culture.. Canadian Journal of Microbiology 24:1395–1403
    [Google Scholar]
  29. Nur I., Steinitz Y.L., Okon Y., Henis Y. 1981; Carotenoid composition and function in nitrogenfixing bacteria of the genus Azospirillum.. Journal of General Microbiology 122:27–32
    [Google Scholar]
  30. Nur I., Okon Y., Henis Y. 1982; Effect of dissolved oxygen tension on production of carotenoids, poly-β-hydroxybutyrate, succinate oxidase and superoxide dismutase by Azospirillum brasilense Cd grown in continuous culture.. Journal of General Microbiology 128:2937–2943
    [Google Scholar]
  31. Okon Y., Houchins J.P., Albrecht S.L., Burris R.H. 1977; Growth of Spirillum lipoferum at constant partial pressures of oxygen, and the properties of its nitrogenase in cell-free extracts.. Journal of General Microbiology 98:87–93
    [Google Scholar]
  32. Okon Y., Nur I., Henis Y. 1983; Effect of oxygen concentration on electron transport components and microaerobic properties of Azospirillum brasilense.. In Azospirillum II, Genetics, Physiology, Ecology (Exper- ientia supplementum,) 48 pp. 115–126 Klingmiiller W. Edited by Basel: Birkhauser Verlag;
    [Google Scholar]
  33. Patriquin D.G., Dobereiner J., Jain D.K. 1983; Sites and processes of association betweendiazotrophs and grasses.. Canadian Journal of Microbiology 29:900–915
    [Google Scholar]
  34. Ramos J.L., Robson R.L. 1985; Lesions in citrate synthase that affect aerobic nitrogen fixation by Azotobacter chroococcum.. Journal of Bacteriology 162:746–751
    [Google Scholar]
  35. Reinhold B., Hurek T., Fendrik I., Pot B., Gillis M., Kersters K., Thielemans S., Deley J. 1987; Azospirillum halopraeferens sp. nov., a nitrogen-fixing organism associated with roots of Kallar grass (Leptochloa fusca (L.) Kunth).. International Journal of Systematic Bacteriology 37:43–51
    [Google Scholar]
  36. Robson L., Postgate J.R. 1980; Oxygen and hydrogen in biological nitrogen fixation.. Annual Review of Microbiology 34:183–207
    [Google Scholar]
  37. Stouthamer A.H., De vries W., Niekus H.G.D. 1979; Microaerophily.. Antonie van Leeuwenhoek 45:5–12
    [Google Scholar]
  38. Tarrand J.J., Krieg N.R., Dobereiner J. 1978; A taxonomic study of the Spirillum lipoferum group, with descriptions of a new genus, Azospirillum gen. nov. and two species, Azospirillum lipoferum (Beijer- inck) comb. nov. and Azospirillum brasilense sp. nov.. Canadian Journal of Microbiology 24:967–980
    [Google Scholar]
  39. Woese C.R., Blanz P., Hespell R.B., Hahn C.M. 1982; Phylogenetic relationship among various helical bacteria.. Current Microbiology 7:119–124
    [Google Scholar]
  40. Yates M.G., Jones C.W. 1974; Respiration and nitrogen fixation in Azotobacter.. Advances in Microbial Physiology 11:97–135
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-134-9-2449
Loading
/content/journal/micro/10.1099/00221287-134-9-2449
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error