1887

Abstract

The transciption of genes that function in N fixation () and nitrogen assimilation () in is coordinately induced in response to O limitation as well as symbiotic development. We have determined the relative steady-state mRNA levels for the and transcription units in bradyrhizobial cells grown under a variety of levels of aerobiosis and in cells isolated from soybean root nodules. All three transcripts are found in cells grown in a rich medium sparged with O concentrations of 5 % (v/v) or less. This expression is qualitatively similar to that observed for during symbiotic development. Potential physiological mechanisms for the coordinate control of these genes are discussed.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-134-3-611
1988-03-01
2022-01-17
Loading full text...

Full text loading...

/deliver/fulltext/micro/134/3/mic-134-3-611.html?itemId=/content/journal/micro/10.1099/00221287-134-3-611&mimeType=html&fmt=ahah

References

  1. Adams T. H. 1986 Transcriptional regulation of nitrogen fixation and nitrogen assimilation genes in Bradyrhizobium japonicum PhD thesis Michigan State University;
    [Google Scholar]
  2. Adams T. H., Chelm B. K. 1984; The nifH and nifDK promoter regions from Rhizobium japonicum share structural homologies with each other and with nitrogen-regulated promoters from other organisms. Journal of Molecular and Applied Genetics 2:392–405
    [Google Scholar]
  3. Ausubel F. M. 1984; Regulation of nitrogen fixation genes. Cell 37:5–6
    [Google Scholar]
  4. Bergerson F. J., Turner G. L. 1967; Nitrogen fixation by the bacteroid fraction of breis of soybean root nodules. Biochimica et biophysica acta 141:507–515
    [Google Scholar]
  5. Bergerson F. J., Turner G. L. 1978; Activity of nitrogenase and glutamine synthetase in relation to availability of oxygen in continuous cultures of a strain of cowpea Rhizobium sp. supplied with excess ammonium. Biochimica et biophysica acta 538:406–416
    [Google Scholar]
  6. Bishop P. E., Guevara J. G., Engelke J. A., Evans H. J. 1976; On the relation between glutamine synthetase and nitrogenase activities in the symbiotic association between Rhizobium japonicum and Glycine max. Plant Physiology 57:542–546
    [Google Scholar]
  7. Brown C. M. 1975; Ammonia assimilation by Rhizobium cultures and bacteroids. Journal of General Microbiology 86:39–48
    [Google Scholar]
  8. Carlson T. A., Chelm B. K. 1986; Apparent eucaryotic origin of glutamine synthetase II from the bacterium Bradyrhizobium japonicum. Nature; London: 322568–570
    [Google Scholar]
  9. Carlson T. A., Guerinot M. L., Chelm B. K. 1985; Characterization of the gene encoding glutamine synthetase I (glnA) from Bradyrhizobium japonicum. Journal of Bacteriology 162:698–703
    [Google Scholar]
  10. Carlson T. A., Martin G. B., Chelm B. K. 1987; Differential transcription of the two glutamine synthetase genes of Bradyrhizobium japonicum. Journal of Bacteriology (in the Press)
    [Google Scholar]
  11. Ching T. M., Hedke S., Newcomb W. 1977; Isolation of bacteria, transforming bacteria, and bacteroids from soybean nodules. Plant Physiology 60:771–774
    [Google Scholar]
  12. Daniel R. M., Limmer A. W., Steele K. W., Smith I. M. 1982; Anaerobic growth, nitrate reduction and denitrification in 46 Rhizobium strains. Journal of General Microbiology 128:1811–1815
    [Google Scholar]
  13. Darrow R. A., Knotts R. R. 1977; Two forms of glutamine synthetase in free-living root-nodule bacteria. Biochemical and Biophysical Research Communications 78:554–559
    [Google Scholar]
  14. Fischer H.-M., Alvarez-Morales A., Hennecke H. 1986; The pleiotropic nature of symbiotic regulatory mutants : Bradyrhizobium japonicum nifA gene is involved in control of nif gene expression and formation of determinate symbiosis. EMBO Journal 5:1165–1173
    [Google Scholar]
  15. Gober J. W., Kashkett E. R. 1983; Methyl-ammonium uptake by Rhizobium sp. strain 32H1. Journal of Bacteriology 153:1196–1201
    [Google Scholar]
  16. Gussin G. N., Ronson C. W., Ausubel F. M. 1986; Regulation of nitrogen fixation genes. Annual Review of Genetics 20:567–591
    [Google Scholar]
  17. Hardy R. W. F., Holsten R. D., Jackson E. K. 1968; The acetylene-ethylene assay for N2 fixation: laboratory and field evaluation. Plant Physiology 43:1185–1207
    [Google Scholar]
  18. Keister D. L. 1975; Acetylene reduction by pure cultures of rhizobia. Journal of Bacteriology 123:1265–1268
    [Google Scholar]
  19. Kurz W. G. W., Larue T. A. 1975; Nitrogenase activity in rhizobia in absence of plant host. Nature; London: 256407–408
    [Google Scholar]
  20. Kuykendall L. D. 1976; Rhizobium japonicum derivatives differing in nitrogen fixing efficiency and carbohydrate utilization. Applied and Environmental Microbiology 32:511–519
    [Google Scholar]
  21. Ludwig R. A. 1978; Control of ammonium assimilation in Rhizobium 32H1. Journal of Bacteriology 135:114–123
    [Google Scholar]
  22. Ludwig R. A. 1980a; Regulation of Rhizobium nitrogen fixation by the unadenylylated glutamine synthetase I system. Proceedings of the National Academy of Sciences of the United States of America 77:5817–5821
    [Google Scholar]
  23. Ludwig R. A. 1980b; Physiological roles of glutamine synthetases I and II in ammonium assimilation in Rhizobium sp. 32H1. Journal of Bacteriology 141:1209–1216
    [Google Scholar]
  24. Ludwig R. A. 1984; Rhizobium free-living nitrogen fixation occurs in specialized nongrowing cells. Proceedings of the National Academy of Sciences of the United States of America 81:1566–1569
    [Google Scholar]
  25. Magasanik B. 1982; Genetic control of nitrogen assimilation in bacteria. Annual Review of Genetics 16:135–168
    [Google Scholar]
  26. Maxam A. M., Gilbert W. 1980; Sequencing end-labelled DNA with base-specific chemical cleavages. Methods in Enzymology 65:499–580
    [Google Scholar]
  27. Mccomb J. A., Elliot J., Dilworth M. J. 1975; Acetylene reduction by Rhizobium in pure culture. Nature; London: 256410–412
    [Google Scholar]
  28. Meyer M. C., Pueppke S. G. 1980; Differentiation of Rhizobium japonicum derivatives by antibiotic sensitivity patterns, lectin binding, and utilization of biochemicals. Canadian Journal of Microbiology 26:606–612
    [Google Scholar]
  29. Miflin B. J., Lea P. J. 1976; The pathway of nitrogen assimilation in plants. Phytochemistry 15:873–885
    [Google Scholar]
  30. Mortenson L. E., Thornley R. N. F. 1979; Structure and function of nitrogenase. Annual Review of Biochemistry 48:387–418
    [Google Scholar]
  31. O’gara , Shanmugan K. T. 1976; Regulation of nitrogen fixation by Rhizobia export of fixed N2 as NH4. Biochimica et biophysica acta 437:313–321
    [Google Scholar]
  32. Pagan J. D., Child J. J., Scowcroft W. R., Gibson A. H. 1975; Nitrogen fixation by Rhizobium cultured on a defined medium. Nature; London: 256406–407
    [Google Scholar]
  33. Rao V. R., Darrow R. A., Keister D. L. 1978; Effect of oxygen tension on nitrogenase and on glutamine synthetases I and II in Rhizobium japonicum 61A76. Biochemical and Biophysical Research Communications 21:224–231
    [Google Scholar]
  34. Scott D. B., Hennecke H., Lim S. T. 1979; The biosynthesis of nitrogenase MoFe protein polypeptides in free-living cultures of Rhizobium japonicum. Biochimica et biophysica acta 565:365–378
    [Google Scholar]
  35. Somerville J. E., Kahn M. L. 1983; Cloning of the glutamine synthetase I gene from Rhizobium meliloti. Journal of Bacteriology 156:168–176
    [Google Scholar]
  36. Stripf R., Werner D. 1978; Differentiation of Rhizobium japonicum. II. Enzymatic activities in bacteroids and plant cytoplasm during the development of nodules of Glycine max. Zeitschrift fur Naturforschung 33c:373–381
    [Google Scholar]
  37. Szeto W. W., Nixon B. T., Ronson C. W., Ausubel F. M. 1987; Identification and characterization of the Rhizobium meliloti ntrC gene: R. meliloti has separate regulatory pathways for activation of nitrogen fixation genes in free-living and symbiotic cells. Journal of Bacteriology 169:1423–1432
    [Google Scholar]
  38. Tjepkema J., Evans H. J. 1975; Nitrogen fixation by free-living Rhizobium in a defined liquid medium. Biochemical and Biophysical Research Communications 65:625–628
    [Google Scholar]
  39. Werner D., Morschel E., Stripf R. 1980; Development of nodules of Glycine max infected with an ineffective strain of Rhizobium japonicum. Planta 147:320–329
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-134-3-611
Loading
/content/journal/micro/10.1099/00221287-134-3-611
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error