1887

Abstract

The Enzyme II of the phosphoenolpyruvate- (PEP-) dependent phosphotransferase system (PTS), which catalyses the uptake of fructose and its concomitant phosphorylation to fructose 1-phosphate by , is specified by a gene designated The nucleotide sequence of a 2·5 kb ll restriction fragment spanning , cloned on a plasmid, was determined. This fragment contained three open reading frames (ORFs) but only one complete ORF, 1689 base pairs long, which was preceded by a well-defined Shine-Dalgarno sequence and ended with a -independent transcription terminator. The amino acid sequence deduced from this DNA corresponds to that of a protein of 563 amino acids (57·5 kDa), which has the hydropathic profile expected of an integral membrane protein (average hydropathy = 0·40) and which is characterized by a number of well-marked hydrophobic loops that may correspond to membrane-spanning regions. There is relatively little overall homology between this protein and those of other Enzymes II of the PTS but there is considerable correspondence between the region surrounding one of the six histidine residues (His) of Enzyme II and those surrounding the particular histidines of other Enzymes II, and of HPr, known to be involved in phosphorylation. A plasmid carrying the complete nucleotide sequence, but not that of any other functional protein, fully restored the ability of mutants to grow on fructose and of extracts of mutants to phosphorylate fructose, which confirms that the nucleotide sequence determined specifies Enzyme II.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-134-10-2757
1988-10-01
2021-07-31
Loading full text...

Full text loading...

/deliver/fulltext/micro/134/10/mic-134-10-2757.html?itemId=/content/journal/micro/10.1099/00221287-134-10-2757&mimeType=html&fmt=ahah

References

  1. Ashworth J. M., Kornberg H. L. 1966; The anaplerotic fixation of carbon dioxide by Escherichia coli. . Proceedings of the Royal Society of London B165:179–188
    [Google Scholar]
  2. Bachmann B. J. 1983; Linkage map of Escherichia coli K-12, edition 7. Microbiological Reviews 47:180–230
    [Google Scholar]
  3. Bankier A. T., Barrell B. G. 1983; Shotgun DNA sequencing. Nucleic acid biochemistry B5081–34 In Technique in the Life Sciences B5 Flavell R. A. Edited by Elsevier Scientific Publishers Ireland Ltd.;
    [Google Scholar]
  4. Bochner B. R., Huang H.-C., Schieven G. L., Ames B. N. 1980; Positive selection for loss of tetracycline resistance. Journal of Bacteriology 143:926–933
    [Google Scholar]
  5. Bolivar F., Rodriguez R. L., Greene P. J., Betlach M. C., Heyneker H. L., Boyer H. W., Crosa J. H., Falkow S. 1977; Construction and characterization of new cloning vectors. II. A multipurpose cloning system. Gene 2:95–113
    [Google Scholar]
  6. Borck K., Beggs J. D., Brammar W. J., Hopkins A. S., Murray N. E. 1976; The construction in vitro of transducing derivatives of phage lambda. Molecular and General Genetics 146:199–207
    [Google Scholar]
  7. Bradford M. M. 1976; A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry 72:248–254
    [Google Scholar]
  8. Bramley H. F., Kornberg H. L. 1987a; Nucleotide sequence of bglC, the gene specifying EnzymellbgI of the PEP:sugar phosphotransferase system in Escherichia coli K12, and overexpression of the gene product. Journal of General Microbiology 133:563–573
    [Google Scholar]
  9. Bramley H. F., Kornberg H. L. 1987b; Sequence homologies between the proteins of bacterial phos- phoenolpyruvate-dependent sugar phosphotransferase systems: identification of possible phosphatecarrying histidine residues. Proceedings of the National Academy of Sciences of the United States of America 84:4777–4780
    [Google Scholar]
  10. Curtis S. J., Epstein W. 1975; Phosphorylation of D-glucose in Escherichia coli mutants defective in glucose phosphotransferase, mannose phosphotransferase, and glucokinase. Journal of Bacteriology 122:1189–1199
    [Google Scholar]
  11. Dardel F., Fayat G., Blanquet S. 1984; Molecular cloning and primary structure of the Escherichia coli methionyl-tRNA synthetase gene. Journal of Bacteriology 160:1115–1122
    [Google Scholar]
  12. Dretzen G., Bellard M., Sarsonne-Corsi J. K., Overath P. 1981; A reliable method for the recovery of DNA fragments from agarose and acrylamide gels. Analytical Biochemistry 112:295–298
    [Google Scholar]
  13. Ebner R., Lengeler J. W. 1988; DNA sequence of the gene scrA encoding the sucrose transport protein EnzymeIIScr of the phosphotransferase system from enteric bacteria: homology of the En- zymeIIScr and EnzymeIIBgl proteins. Molecular Microbiology 2:9–17
    [Google Scholar]
  14. Erni B., Zanolari B. 1986; Glucose permease of the bacterial phosphotransferase system: gene cloning, overproduction and the amino acid sequence of enzymeIIGIc . Journal of Biological Chemistry 261:16398–16403
    [Google Scholar]
  15. Erni B., Zanolari B., Kocher H. P. 1987; The mannose permease of Escherichia coli consists of three different proteins: amino acid sequence and function in sugar transport, sugar phosphorylation, and penetration of phage λ DNA. Journal of Biological Chemistry 262:5238–5247
    [Google Scholar]
  16. Ferenci T., Kornberg H. L. 1971; Pathway of fructose utilization by Escherichia coli. . FEBS tetters 13:127–130
    [Google Scholar]
  17. Geerse R. H., Ruig C. R., Schuitema A. R. J., Postma P. W. 1986; Relationship between pseudo- HPr and the PEP:fructose phosphotransferase system in Salmonella typhimurium and Escherichia coli. . Molecular and General Genetics 203:435–444
    [Google Scholar]
  18. Hanahan D. 1983; Studies on transformation of Escherichia coli with plasmids. Journal of Molecular Biology 166:557–580
    [Google Scholar]
  19. Kornberg H. L. 1986; The roles of HPr and FPr in the utilization of fructose by Escherichia coli. . FEBS tetters 194:12–15
    [Google Scholar]
  20. Kornberg H. L., Elvin C. M. 1987; Location and function offruC, a gene involved in the regulation of fructose utilization by Escherichia coli. . Journal of General Microbiology 133:341–346
    [Google Scholar]
  21. Kornberg H. L., Jones-Mortimer M. C. 1975; PtsX: a gene involved in the uptake of glucose and fructose by Escherichia coli. . FEBS tetters 51:1–4
    [Google Scholar]
  22. Kyte J., Doolittle R. F. 1982; A simple method for displaying the hydropathic character of a protein. Journal of Molecular Biology 157:105–132
    [Google Scholar]
  23. Lee C. A., Saier M. H. Jr 1983; Mannitol- specific enzymell of the bacterial phosphotransferase system. III. The nucleotide sequence of the permease gene. Journal of Biological Chemistry 258:10761–10767
    [Google Scholar]
  24. Maniatis T., Fritsch E. F., Sambrook J. 1982 Molecular Cloning: a Laboratory Manual Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  25. Mcfall E. 1967; Dominance studies with stable merodiploids in the D-serine deaminase system of Escherichia coli K12. Journal of Bacteriology 94:1982–1988
    [Google Scholar]
  26. Middenhorf A., Schweizer H., Vreeman J., Boos W. 1984; Mapping of markers in the gyrA- his region of Escherichia coli. . Molecular and General Genetics 197:175–181
    [Google Scholar]
  27. Miller J. H. 1972 Experiments in Molecular Genetics Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  28. Nelson S. O., Schuitema A. R. J., Benne R., Van Der Ploeg L. H. T., Plijter J. J., Aan F., Postma P. W. 1984; Molecular cloning, sequencing and expression of the err gene; the structural gene for IIIGlc of the bacterial PEP:glucose phosphotransferase system. EMBO Journal 3:1587–1593
    [Google Scholar]
  29. Postma P. W., Lengeler J. W. 1985; Phospho- enolpyruvate carbohydrate phosphotransferase system of bacteria. Microbiological Reviews 49:232–269
    [Google Scholar]
  30. Reiner A. M. 1977; Xylitol and D-arabitol toxicities due to derepressed fructose, galactitol and sorbitol phosphotransferase of Escherichia coli. . Journal of Bacteriology 132:166–173
    [Google Scholar]
  31. Rogers M. J., Ohgi T., Plumbridge J., Soll D. 1988; Nucleotide sequences of the Escherichia coli nagE and nagB genes: the structural genes for the N- acetylglucosamine transport protein of the bacterial phosphoenolpyruvate: sugar phosphotransferase system and for glucosamine 6-phosphate deaminase. Gene 62:197–207
    [Google Scholar]
  32. Rosenberg N., Court D. 1979; Regulatory sequences involved in the promotion and termination of RN A transcription. Annual Review of Genetics 13:319–353
    [Google Scholar]
  33. Saier M. H. Jr 1985 Mechanisms and Regulation of Carbohydrate Transport in Bacteria New York: Academic Press;
    [Google Scholar]
  34. Saier M. H. Jr Simoni R. D., Roseman S. 1976; Sugar transport. Properties of mutant bacteria defective in proteins of the phosphoenolpyruvate: sugar phosphotransferase system. Journal of Biological Chemistry 251:6584–6597
    [Google Scholar]
  35. Saier M. H. Jr Lee C. A., Waygood E. B. 1985; Evidence for the evolutionary relatedness of the proteins of the bacterial phosphoenolpyruvate: sugar phosphotransferase system. Journal of Cellular Biochemistry 27:43–56
    [Google Scholar]
  36. Staden R. 1987; Computer handling of DNA sequencing projects. In Nucleic Acid and Protein Analysis: a Practical Approach pp 173–217 Bishop M. J., Rawlings C. J. Edited by Oxford: IRL Press;
    [Google Scholar]
  37. Stormo G. D. 1987; Identifying coding sequences. In Nucleic Acid and Protein Analysis: a Practical Approach pp 231–258 Bishop M. J., Rawlings C. J. Edited by Oxford: IRL Press;
    [Google Scholar]
  38. Stormo G. D., Schneider T. D., Gold L. M. 1982; Characterization of translational initiation sites in Escherichia coli. . Nucleic Acids Research 10:2971–2996
    [Google Scholar]
  39. Sutrina S. L., Chin A. M., Esch F., Saier M. H. Jr 1988; Purification and characterization of the fructose-inducible HPr-like protein, FPr, and the fructose-specific Enzyme III of the phosphoenolpyruvate : sugar phosphotransferase system of Salmonella typhimurium. . Journal of Biological Chemistry 263:5061–5069
    [Google Scholar]
  40. Tabor S., Richardson C. C. 1987; DNA sequence analysis with a modified bacteriophage T7 DNA polymerase. Proceedings of the National Academy of Sciences of the United States of America 84:4767–4771
    [Google Scholar]
  41. Walter R. W. Jr Anderson R. L. 1973; Evidence that the inducible phosphoenolpyruvate :d-fructose 1-phosphate phosphotransferase system of Aerobacter aerogenes does not require ‘HPr’. Biochemical and Biophysical Research Communications 52:93–97
    [Google Scholar]
  42. Waygood E. B. 1980; Resolution of the phosphoenolpyruvate: fructose phosphotransferase system of Escherichia coli into two components; Enzyme II fructose and fructose-induced HPr-like protein (FPr). Canadian Journal of Biochemistry 58:40–48
    [Google Scholar]
  43. Waygood E. B., Mattoo R. L., Peri K. G. 1984; Phosphoproteins and the phosphoenolpyruvate: sugar phosphotransferase system in Salmonella typhimurium and Escherichia coli: evidence for IIImannose, IIIfructose, IIIglucitol and the phosphorylation of EnzymeIImannito1 and EnzymeII Nacetylglucosamine . Journal of Cellular Biochemistry 25:139–159
    [Google Scholar]
  44. Weigel N., Powers D. A., Roseman S. 1982; Sugar transport by the bacterial phosphotransferase system. Primary structure and active site of a general phosphocarrier protein (HPr) from Salmonella typhimurium. . Journal of Biological Chemistry 257:14499–14509
    [Google Scholar]
  45. Yamada M., Saier M. J. Jr 1987; Glucitol- specific enzymes of the phosphotransferase system in Escherichia coli. Nucleotide sequence of the gut operon. Journal of Biological Chemistry 262:5455–5463
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-134-10-2757
Loading
/content/journal/micro/10.1099/00221287-134-10-2757
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error