1887

Abstract

produced an extracellular SDS-resistant protease (protease A) with an apparent of approximately 54000 when cultured in complex, proteinaceous media. Ca was required for the activation and stability of this protease. Its activity was inhibited by EDTA and a serine protease inhibitor, but was not affected by an inhibitor of trypsin-like enzymes. Optimum protease activity occurred under alkaline conditions. Two SDS-resistant exoproteases, B and C, with apparent values of approximately 41000 and 37000 respectively, were also produced in complex proteinaceous media. Dialysis of cell-free supernatant samples, which contained predominantly protease A, against distilled water, resulted in increased B and C activity. Production of protease A, B and C activities was inhibited by -phenanthroline, quinacrine and lack of aeration.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-133-2-391
1987-02-01
2024-05-06
Loading full text...

Full text loading...

/deliver/fulltext/micro/133/2/mic-133-2-391.html?itemId=/content/journal/micro/10.1099/00221287-133-2-391&mimeType=html&fmt=ahah

References

  1. Barach J. T., Adams D. M., Speck M. L. 1976; Stabilization of a psychrotrophic Pseudomonas protease by calcium against thermal inactivation in milk at ultrahigh temperature. Applied and Environmental Microbiology 31:875–879
    [Google Scholar]
  2. Berkeley R. C. W., Pepper E. A., Caulfield M. P., Melling J. 1978; The inhibition of Staphylococcus aureus enterotoxin A production by cerulenin and quinacrine; presumption evidence for a lipid intermediate/protease release mechanism. FEMS Microbiology Letters 4:103–105
    [Google Scholar]
  3. Bissell M. J., Tosi R., Gorini L. 1971; Mechanism of excretion of a bacterial proteinase: factors controlling accumulation of the extracellular proteinase of a Sarcina strain (Coccus P). Journal of Bacteriology 105:1099–1109
    [Google Scholar]
  4. Coleman J. E., Vallee B. L. 1960; Metallo-carboxypeptidases. Journal of Biological Chemistry 235:390–395
    [Google Scholar]
  5. Deane S. M., Robb F. T., Woods D. R. 1986; Isolation and characterization of a Vibrio alginolyticus mutant that overproduces extracellular proteases. Journal of General Microbiology 132:893–898
    [Google Scholar]
  6. Fishman Y., Rottem S., Citri N. 1980; Preferential suppression of normal exoenzyme formation by membrane-modifying agents. Journal of Bacteriology 141:1435–1438
    [Google Scholar]
  7. Hare P., Long S., Robb F. T., Woods D. R. 1981; Regulation of exoprotease production by temperature and oxygen in Vibrio alginolyticus. . Archives of Microbiology 130:276–280
    [Google Scholar]
  8. Hare P., Scott-Burden T., Woods D. R. 1983; Characterization of extracellular alkaline proteases and collagenase induction in Vibrio alginolyticus. . Journal of General Microbiology 129:1141–1147
    [Google Scholar]
  9. Heussen C., Dowdle E. B. 1980; Electrophoretic analysis of plasminogen activators in polyacrylamide gels containing sodium dodecyl sulphate and copolymerized substrates. Analytical Biochemistry 102:196–202
    [Google Scholar]
  10. Long S., Mothibelli M. A., Robb F. T., Woods D. R. 1981; Regulation of extracellular alkaline protease activity by histidine in a collagenolytic Vibrio alginolyticus strain. Journal of General Microbiology 127:193–199
    [Google Scholar]
  11. Lugtenberg B., Van Alphen L. 1983; Molecular architecture and functioning of the outer membrane of Escherichia coli and other Gram-negative bacteria. Biochimica et biophysica acta 737:51–115
    [Google Scholar]
  12. Mcconn J. D., Tsuru D., Yasunobu K. T. 1964; Bacillus subtilis neutral proteinase. Journal of Biological Chemistry 239:3706–3715
    [Google Scholar]
  13. Michaelis S., Beckwith J. 1982; Mechanism of incorporation of cell envelope proteins in Escherichia coli. . Annual Review of Microbiology 36:435–465
    [Google Scholar]
  14. Miller J. H. 1972 Experiments in Molecular Genetics Cold Spring Harbor, New York: Cold Spring Harbor Laboratory;
    [Google Scholar]
  15. Porzio M. A., Pearson A. M. 1975; Isolation of an extracellular neutral proteinase from Pseudomonas fragi. . Biochimica et biophysica acta 384:235–241
    [Google Scholar]
  16. Reid G. C., Robb F. T., Woods D. R. 1978; Regulation of extracellular collagenase production in Achromobacter iophagus. . Journal of General Microbiology 109:149–154
    [Google Scholar]
  17. Reid G. C., Woods D. R., Robb F. T. 1980; Peptone induction and rifampicin insensitive collagenase production by Vibrio alginolyticus. . Journal of Bacteriology 142:447–454
    [Google Scholar]
  18. Silhavy T. J., Benson S. A., Emr S. D. 1983; Mechanisms of protein localization. Microbiological Reviews 47:313–344
    [Google Scholar]
  19. Sreedhara Swamy K. H., Goldberg A. L. 1982; Subcellular distribution of various proteases in Escherichia coli. . Journal of Bacteriology 149:1027–1033
    [Google Scholar]
  20. Stepaniak L., Fox P. F., Daly C. 1982; Isolation and general characterization of a heat-stable proteinase from Pseudomonas fluorescens AFT 36. Biochimica et biophysica acta 717:376–383
    [Google Scholar]
  21. Traficante L. J., Lampen J. O. 1977; Vesicle penicillinase of Bacillus licheniformis : existence of periplasmic-releasing factor(s). Journal of Bacteriology 129:184–190
    [Google Scholar]
  22. Welton R. L., Woods D. R. 1973; Halotolerant collagenolytic activity of Achromobacter iophagus. . Journal of General Microbiology 75:191–196
    [Google Scholar]
  23. Welton R. L., Woods D. R. 1975; Collagenase production by Achromobacter iophagus. . Biochimica et biophysica acta 384:228–234
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-133-2-391
Loading
/content/journal/micro/10.1099/00221287-133-2-391
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error