1887

Abstract

Bacteroids isolated from stem nodules of were able to reduce CH when glucose or succinate was the energy-yielding substrate. To be efficient, glucose always required low O concentrations, both with free O and with O delivered by leghaemoglobin extracted from French-bean nodules. Lactate detected in the stem nodule cytosol supported CH reduction by bacteroid preparations, but the O tensions required for optimal activity were always higher than those defined for glucose, as predicted by the model of Bergersen & Trinchant (J. theor. Biol. 115, 93–102, 1985). In contrast, lactate was only present at very low concentrations in the cytosol of French-bean nodules and was unable to support CH reduction by bacteroids isolated from these nodules. Lactate dehydrogenase (EC 1.1.1.27) extracted from stem nodule bacteroids and free-living cells of sp. () exhibited a higher affinity for lactate than did the enzyme from biovar or and their symbiotic forms. Lactate appears to be a specific energy-yielding substrate supporting N fixation by Sesbania bacteroids and could play a major role when fermentative processes take place in the nodules.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-133-1-37
1987-01-01
2021-10-24
Loading full text...

Full text loading...

/deliver/fulltext/micro/133/1/mic-133-1-37.html?itemId=/content/journal/micro/10.1099/00221287-133-1-37&mimeType=html&fmt=ahah

References

  1. Barker S. B. 1957; Preparation and colorimetric determination of lactic acid. Methods in Enzymology 3:241–246
    [Google Scholar]
  2. Bergersen F. J., Trinchant J. C. 1985; Flux of O2 affects apparent optimal concentration of O2 in suspensions of bacteria respiring microaerobically. Journal of Theoretical Biology 115:93–102
    [Google Scholar]
  3. Bergersen F. J., Turner G. L. 1979; Systems utilizing oxygenated leghaemoglobin and myoglobin as sources of free dissolved O2 at low concentrations for experiments with bacteria. Analytical Biochemistry 96:165–174
    [Google Scholar]
  4. De Vries G. E., In’T Veld P., Kijne J. W. 1980; Production of organic acids in Pisum sativum root nodules as a result of oxygen stress. Plant Science Letters 20:115–123
    [Google Scholar]
  5. Dilworth M. J., Glenn A. R. 1984; How does a legume nodule work?. Trends in Biochemical Sciences 12:519–523
    [Google Scholar]
  6. Dreyfus B., Dommergues Y. 1980; Non-inhibition de la fixation d’azote atmospherique par l’azote combiné chez une légumineuse à nodules caulinaires, Sesbania rostrata. Comptes rendus de l’Académie des sciences 291:767–770
    [Google Scholar]
  7. Dreyfus B., Dommergues Y. 1981; Nitrogenfixing nodules induced by Rhizobium on the stem of the tropical legume Sesbania rostrata. FEMS Microbiology Letters 10:313–317
    [Google Scholar]
  8. Elmerich C., Dreyfus B. L., Reysset G., Aubert J. P. 1982; Genetic analysis of nitrogen fixation in a tropical fast-growing Rhizobium. EMBO Journal 1:499–503
    [Google Scholar]
  9. Glenn A. R., McKay I. A., Arwas R., Dilworth M. J. 1984; Sugar metabolism and the symbiotic properties of carbohydrate mutants of Rhizobium leguminosarum. Journal of General Microbiology 130:239–245
    [Google Scholar]
  10. Kennedy I. R., Rigaud J., Trinchant J. C. 1975; Nitrate reductase from bacteroids of Rhizobium japonicum: enzyme characteristics and possible interaction with nitrogen fixation. Biochimica et biophysica acta 397:24–35
    [Google Scholar]
  11. Larue T. A., Peterson J. B., Tajima S. 1984; Carbon metabolism in the legume nodule. In Advances in Nitrogen Fixation Research pp. 437–443 Veeger C., Newton W. E. Edited by The Hague: M. Nijhoff & W. Junk;
    [Google Scholar]
  12. Peterson J. B., Larue T. A. 1981; Utilization of aldehydes and alcohols by soybean bacteroids. Plant Physiology 68:489–493
    [Google Scholar]
  13. Reibach P. H., Streeter J. G. 1983; Metabolism of 14C-labelled photosynthate and distribution of enzymes of glucose metabolism in soybean nodules. Plant Physiology 72:634–640
    [Google Scholar]
  14. Rigaud J. 1976; Effet des nitrates sur la fixation d’azote par les nodules de haricot (Phaseolus vulgaris L.). Physiologie végétale 14:297–308
    [Google Scholar]
  15. Rigaud J., Puppo A. 1975; Indole-3-acetic acid catabolism by soybean bacteroids. Journal of General Microbiology 88:223–228
    [Google Scholar]
  16. Stowers M. D. 1985; Carbon metabolism in Rhizobium species. Annual Review of Microbiology 39:89–108
    [Google Scholar]
  17. Tajima S., Larue T. A. 1982; Enzymes for acetaldehyde and ethanol formation in legume nodules. Plant Physiology 70:388–392
    [Google Scholar]
  18. Trinchant J. C., Rigaud J. 1974; Lactate dehydrogenase from Rhizobium. Purification and role in indole metabolism. Physiologia plantarum 32:394–399
    [Google Scholar]
  19. Trinchant J. C., Rigaud J. 1979; Sur les substrats énérgetiques utilisés, lors de la réduction de C2H2, par les bactéroïdes extraits des nodosités de Phaseolus vulgaris L. Physiologie végétale 17:547–556
    [Google Scholar]
  20. Trinchant J. C., Birot A. M., Rigaud J. 1981; Oxygen supply and energy-yielding substrates for nitrogen fixation (acetylene reduction) by bacteroid preparations. Journal of General Microbiology 125:159–165
    [Google Scholar]
  21. Trinchant J. C., Birot A. M., Denis M., Rigaud J. 1983; C2H2 reduction, oxygen uptake and cytochrome-c reduction by bacteroids isolated from French-bean nodules. Archives of Microbiology 134:182–186
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-133-1-37
Loading
/content/journal/micro/10.1099/00221287-133-1-37
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error