1887

Abstract

Summary: Δψ-reduced mutants of were shown to be resistant to the positively charged antitumoral drugs 2--methylellipticinium (NME) and 2--methyl-9-hydroxyellipticinium (NMHE). Conversely, mutants selected for their resistance to NMHE were mapped within the locus and exhibited the pleiotropic AmiA phenotype. This shows that Δψ is a critical parameter in determining resistance to these drugs in and suggests that they are accumulated within this bacterium in response to Δψ. As a consequence NME and NMHE appear to be valuable tools for selecting Δψ-reduced mutants in

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-132-9-2637
1986-09-01
2021-08-04
Loading full text...

Full text loading...

/deliver/fulltext/micro/132/9/mic-132-9-2637.html?itemId=/content/journal/micro/10.1099/00221287-132-9-2637&mimeType=html&fmt=ahah

References

  1. Charcosset J. Y., Jacquemin Sablon A., le Pecq J. B. 1984; Effect of membrane potential on the cellular uptake of 2-N-methylellipticinium by L1210 cells. Biochemical Pharmacology 33:2271–2275
    [Google Scholar]
  2. Claverys J. P., Lataste H., Sicard A. M. 1979; Locatization of two EcoRI restriction sites within the amiA locus in pneumococcus: relationship between the physical and the genetic map. Transformation 1978135–150
    [Google Scholar]
  3. Claverys J. P., Lefèvre J. C., Sicard A. M. 1980; Transformation of Streptococcus pneumoniae with Spneumonia–λ phage hybrid DNA: induction of deletions Proceedings of the National Academy of Sciences of the United States of America. 77:3534–3538
    [Google Scholar]
  4. Festy B., Poisson J., Paoletti C. 1971; A new intercalating drug methoxy-9-ellipticine. FEBS Letters 17:321–323
    [Google Scholar]
  5. Friedman L. R., Ravin A. W. 1972; Genetic and biochemical properties of thymidine-dependent mutants of pneumococcus. Journal of Bacteriology 109:459–461
    [Google Scholar]
  6. Gasc A. M., Vacher J., Buckingham R., Sicard A. M. 1979; Characterization of an amber suppressor in pneumococcus. Molecular and General Genetics 172:295–301
    [Google Scholar]
  7. Lempereur L., Sautereau A. M., Tocanne J. F., Laneelle G. 1984; Ellipticine derivatives interacting with model membranes Influence of quarter narization of nitrogen-2. Biochemical Pharmacology 33:2499–2503
    [Google Scholar]
  8. le Pecq J. B., Dat Xuong N., Grosse C., Paoletti C. 1974; A new antitumoral agent 9-hydroxy-ellipticine: possibility of a rational design of anticancerous drugs in the series of DNA intercalating drugs. Proceedings of the National Academy of Sciences of the United States of America 71:5078–5082
    [Google Scholar]
  9. Méjean V., Claverys J. P., Vesseghi H., Sicard A. M. 1981; Rapid cloning of specific DNA fragments of Streptococcus pneumoniae by vector integration into the chromosome followed by endo-nucleolytic excision. Gene 15:289–293
    [Google Scholar]
  10. Paoletti C., Cros S., Dat Xuong N., Lecointe P., Moisand A. 1979; Comparative cytotoxic and antitumoral effects of ellipticine derivatives on mouse L1210 leukemia. Chemical and Biological Interactions 25:45–58
    [Google Scholar]
  11. René B., Banoun H., Auclair C., Paoletti C. 1985; Use of a new intercalating fluorescing probe for studies on the mechanism of frameshift mutagenesis in Salmonella typhimurium. Biochimie 67:327–334
    [Google Scholar]
  12. Sicard A. M. 1964; A new synthetic medium for Diplococcus pneumoniae and its use for the study of reciprocal transformation at the amiA locus. Genetics 50:31–44
    [Google Scholar]
  13. Sirotnak F. M., Donati G. J., Hutchison D. J. 1964; Genetic modification of the structure and amount of FH2-reductase in amethopterin-resistant Streptococcus pneumonia. Journal of Biologicial Chemistry 239:4298–4302
    [Google Scholar]
  14. Tercé F., Tocanne J. F., Laneelle G. 1983; Ellipticine-induced alteration of model and natural membranes. Biochemical Pharmacology 14:2189–2194
    [Google Scholar]
  15. Trombe M. C. 1984; Alteration of Streptococcus pneumoniae membrane properties by the folate analog methotrexate. Journal of Bacteriology 160:849–853
    [Google Scholar]
  16. Trombe M. C., Sicard A. M. 1975; Dihydrofolate reductase from the wild type and aminopterin-resistant mutants of Diplococcus pneumoniae. Journal of Bacteriology 121:766–770
    [Google Scholar]
  17. Trombe M. C., Laneelle M. A., Laneelle G. 1979; Lipid composition of aminopterin-resistant and sensitive strains of Streptococcus pneumonia. Effect of aminopterin inhibition. Biochimica et biophysica acta 574:290–300
    [Google Scholar]
  18. Trombe M. C., Laneelle G., Sicard A. M. 1984; Characterization of Streptococcus pneumoniae mutant with altered electric transmembrane potential. Journal of Bacteriology 158:1109–1114
    [Google Scholar]
  19. Vasseghi H., Claverys J. P. 1983; Amplification of a chimeric plasmid carrying an erythromycin resistance determinant introduced into the genome of Streptococcus pneumonia. Gene 21:285–292
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-132-9-2637
Loading
/content/journal/micro/10.1099/00221287-132-9-2637
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error