1887

Abstract

SUMMARY: is able to utilize -arginine as the energy source for growth under anaerobic, nitrate-free conditions. Mutations in the chromosomal gene cluster specifying the inducible arginine deiminase pathway enzymes abolish fermentative growth on arginine. From two different ::Tn 5-751 insertion mutants of recombinant plasmids have been derived which carry a resistance marker of transposon Tn plus flanking parts of the region. These recombinant plasmids served to reconstruct the functional cluster on a 5.6 kb fragment, which was inserted into the broad-host-range vector pKT240. In this 5.6 kb segment complemented mutations in and contained the control region necessary in for enzyme induction by oxygen limitation and arginine. The results of subcloning experiments and transcriptional fusions, the polarity of transposon insertions and the effect of external promoters led to the conclusion that the structural genes (for arginine deiminase), (for catabolic ornithine carbamoyltransferase) and (for carbamate kinase) are contiguous and transcribed in the same direction. Thus, the cluster appears to have the characteristics of an operon. In the cloned genes were expressed at low, non-inducible levels; strong vector promoters enhanced expression up to 100-fold. This indicates that transcriptional initiation at the promoter(s) is poor in

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-132-10-2667
1986-10-01
2021-07-26
Loading full text...

Full text loading...

/deliver/fulltext/micro/132/10/mic-132-10-2667.html?itemId=/content/journal/micro/10.1099/00221287-132-10-2667&mimeType=html&fmt=ahah

References

  1. Abdelal A. T., Bibb W. F., Nainan O. 1982; Carbamate kinase from Pseudomonas aeruginosa: purification, characterization, physiological role, and regulation. Journal of Bacteriology 151:1411–1419
    [Google Scholar]
  2. Bagdasarian M. M., Amann E., Lurz R., Rueckert B., Bagdasarian M. 1983; Activity of the hybrid trp–lac(tac) promoter of Escherichia coli in Pseudomonas putida. Construction of broad-host-range, controlled-expression vectors. Gene 26:273–282
    [Google Scholar]
  3. Borck K., Beggs J. D., Brammar W. J., Hopkins A. S., Murray N. E. 1976; The construction in vitro of transducing derivatives of phage lambda. Molecular and General Genetics 146:199–207
    [Google Scholar]
  4. Buckel P., Zehelein E. 1981; Expression of Pseudomonas fluorescens d-galactose dehydrogenase in E. coli. Gene 16:149–159
    [Google Scholar]
  5. Dretzen G., Bellard M., Sassone-Corsi P., Chambon P. 1981; A reliable method for the recovery of DNA fragments from agarose and acrylamide gels. Analytical Biochemistry 112:295–298
    [Google Scholar]
  6. Früh R., Watson J. M., Haas D. 1983; Construction of recombination-deficient strains of Pseudomonas aeruginosa. Molecular and General Genetics 191:334–337
    [Google Scholar]
  7. Haas D. 1983; Genetic aspects of biodegradation by pseudomonads. Experientia 39:1199–1213
    [Google Scholar]
  8. Haas D., Evans R., Mercenier A., Simon J.-P., Stalon V. 1979; Genetic and physiological characterization of Pseudomonas aeruginosa mutants affected in the catabolic ornithine carbamoyltransferase. Journal of Bacteriology 139:713–720
    [Google Scholar]
  9. Haas D., Matsumoto H., Moretti P., Stalon V., Mercenier A. 1984a; Arginine degradation in Pseudomonas aeruginosa mutants blocked in two arginine catabolic pathways. Molecular and General Genetics 193:437–444
    [Google Scholar]
  10. Haas D., Cryz S. J. Jr, Itoh Y., Leisinger T., Lüthi E., Mercenier A., Reimmann C., Rella M., Soldati L., Watson J. M., Wretlind B. 1984b; Some applications of transposon insertion mutagenesis in Pseudomonas. In Génétique des Microorganismes Industriels pp 91–111 Edited by Heslot. H. Paris: Société Française de Microbiologie;
    [Google Scholar]
  11. Holloway B. W. 1984; Pseudomonads. In Genetics and Breeding of Industrial Microorganisms pp 63–92 Edited by Ball C. Boca Raton, Florida: CRC Press;
    [Google Scholar]
  12. Holmes D. S., Quigley M. 1981; A rapid boiling method for the preparation of bacterial plasmids. Analytical Biochemistry 114:193–197
    [Google Scholar]
  13. Itoh Y., Watson J. M., Haas D., Leisinger T. 1984; Genetic and molecular characterization of the Pseudomonas plasmid pVS1. Plasmid 11:206–220
    [Google Scholar]
  14. Jeenes D. J., Soldati L., Baur H., Watson J. M., Mercenier A., Reimmann C., Leisinger T., Haas D. 1986; Expression of biosynthetic genes from Pseudomonas aeruginosa and Escherichia coli in the heterologous host. Molecular and General Genetics 203:421–429
    [Google Scholar]
  15. Kroos L., Kaiser D. 1984; Construction of Tn5 lac, a transposon that fuses lacZ expression to exogenous promoters, and its introduction into Myxococcus xanthus. Proceedings of the National Academy of Sciences of the United States of America 81:5816–5820
    [Google Scholar]
  16. Legrain C., Stalon V., Noullez J. P., Mercenier A., Simon J. P., Broman K., Wiame J. M. 1977; Structure and function of ornithine carbamoyltransferases. European Journal of Biochemistry 80:401–409
    [Google Scholar]
  17. Mercenier A., Simon J., -P., Vander Wauven C., Haas D., Stalon V. 1980; Regulation of enzyme synthesis in the arginine deiminase pathway of Pseudomonas aeruginosa. Journal of Bacteriology 144:159–163
    [Google Scholar]
  18. Mercenier A., Stalon V., Simon J.-P., Haas D. 1982; Mapping of the arginine deiminase gene in Pseudomonas aeruginosa. Journal of Bacteriology 149:787–788
    [Google Scholar]
  19. Miller J. H. 1972 Experiments in Molecular Genetics Cold Spring Harbor: Cold Spring Harbor Laboratory;
    [Google Scholar]
  20. Minton N. P., Clarke L. E. 1985; Identification of the promoter of the Pseudomonas gene coding for carboxypeptidase G2. Journal of Molecular and Applied Genetics 3:26–35
    [Google Scholar]
  21. Palleroni N. J. 1984; Family I. Pseudomonadaceae Winslow, Broadhurst, Buchanan, Krunwiede, Rogers and Smith 1917, 555. In Bergey’s Manual of Systematic Bacteriology vol. 1 pp. 141–219 Edited by Krieg N. R. Baltimore: Williams & Wilkins;
    [Google Scholar]
  22. Rella M., Mercenier A., Haas D. 1985; Transposon insertion mutagenesis of Pseudomonas aeruginosa with a Tn5 derivative: application to physical mapping of the arc gene cluster. Gene 33:293–303
    [Google Scholar]
  23. Shibatani T., Kakimoto T., Chibata I. 1978; Subunit and amino acid composition of l-arginine deiminase of Pseudomonas putida. FEBS Letters 96:389–391
    [Google Scholar]
  24. Vander Wauven C., Piérard A., Kley-Raymann M., Haas D. 1984; Pseudomonas aeruginosa mutants affected in anaerobic growth on arginine: evidence for a four-gene cluster encoding the arginine deiminase pathway. Journal of Bacteriology 160:928–934
    [Google Scholar]
  25. Yanisch-Perron C., Vieira J., Messing J. 1985; Improved M13 phage cloning vectors and host strains: nucleotide sequence of the M13mp18 and pUC19 vectors. Gene 33:103–119
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-132-10-2667
Loading
/content/journal/micro/10.1099/00221287-132-10-2667
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error