1887

Abstract

Summary: A temperature-sensitive mutant defective for the ability to utilize L-asparagine as a sole nitrogen source was isolated after -methyl-'-nitro--nitrosoguanidine mutagenesis. The mutation () produces two distinct phenotypic effects. (1) Mutant strains grow poorly at high temperature on minimal plates containing asparagine as the sole nitrogen source; this effect is greatly exacerbated by the presence of methionine. (2) Mutant strains utilize L-asparagine as a nitrogen source three to four times more efficiently at permissive temperatures than the wild-type strains. The mutation maps at 32·4 min on the chromosome, within the cotransduction gap. Mutant strains produce normal amounts of thermo-stable L-asparaginase I activity. The mutation therefore affects a component of the asparagine utilization system other than the catabolism of asparagine within the cell; it probably affects asparagine uptake.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-131-8-2079
1985-08-01
2021-10-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/131/8/mic-131-8-2079.html?itemId=/content/journal/micro/10.1099/00221287-131-8-2079&mimeType=html&fmt=ahah

References

  1. Bachmann B. J. 1983; Linkage map of Escherichia coli K-12. Edition 7. Microbiological Reviews 47:180–230
    [Google Scholar]
  2. Bitner R. M., Kuempel P. L. 1981; P1 transduction map spanning the replication terminus of Escherichia coli K-12. Molecular and General Genetics 184:208–212
    [Google Scholar]
  3. Boyer H. W., Roulland-Dussoix D. 1969; A complementation analysis of the restriction and modification of DNA in Escherichia coli . Journal of Molecular Biology 41:459–472
    [Google Scholar]
  4. Campbell H. A., Mashburn L. T., Boyse E. A., Old L. J. 1967; Two asparaginases from Escherichia coli B. Their separation, purification and antitumor activity. Biochemistry 6:721–730
    [Google Scholar]
  5. Cedar H., Schwartz J. H. 1967; Localization of the two l-asparaginases in anaerobically grown Escherichia coli . Journal of Biological Chemistry 242:3753–3754
    [Google Scholar]
  6. Cedar H., Schwartz J. H. 1968; Production of l-asparaginase II by Escherichia coli . Journal of Bacteriology 96:2043–2048
    [Google Scholar]
  7. Chesney R. H. 1983; E. coli l-asparaginase II production in the presence and absence of catabolite activating protein. FEMS Microbiology Letters 17:161–162
    [Google Scholar]
  8. Chesney R. H., Adler E. 1982; Chromosomal location of attP7, the recA-independent P7 integration site used in the suppression of Escherichia coli dnaA mutations. Journal of Bacteriology 150:1400–1404
    [Google Scholar]
  9. Chesney R. H., Scott J. R. 1978; Suppression of a thermosensitive dnaA mutation of Escherichia coli by bacteriophage P1 and P7. Plasmid 1:145–163
    [Google Scholar]
  10. Del Casale T., Sollitti P., Chesney R. H. 1983; Cytoplasmic l-asparaginase: isolation of a defective strain and mapping of ansA . Journal of Bacteriology 154:513–515
    [Google Scholar]
  11. George A. M., Levy S. B. 1983; Gene in the major cotransduction gap of the Escherichia coli K-12 linkage map required for the expression of chromosomal resistance to tetracycline and other antibiotics. Journal of Bacteriology 155:541–548
    [Google Scholar]
  12. Kafkewitz D., Goodman D. 1974; l-Asparaginase production by the rumen anaerobe Vibrio succinogenes . Applied Microbiology 27:206–209
    [Google Scholar]
  13. Kim K. W., Roon R. J. 1984; Asparaginase II of Saccharomyces cerevisiae: positive selection of two mutations that prevent enzyme synthesis. Journal of Bacteriology 157:958–961
    [Google Scholar]
  14. Miller J. H. 1972 Experiments in Molecular Genetics Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  15. Movva N. R., Katz E., Asdourian P. L., Hirota Y., Inouye M. 1978; Gene dosage effects of the structural gene for a lipoprotein of the Escherichia coli outer membrane. Journal of Bacteriology 133:81–84
    [Google Scholar]
  16. Ron E. Z., Davis B. D. 1971; Growth rate of Escherichia coli at elevated temperatures: limitation by methionine. Journal of Bacteriology 107:391–396
    [Google Scholar]
  17. Ron E. Z., Shani M. 1971; Growth rate of Escherichia coli at elevated temperatures: reversible inhibition of homoserine trans-succinylase. Journal of Bacteriology 107:397–400
    [Google Scholar]
  18. Schwartz J. H., Reeves J. Y., Broome J. D. 1966; Two l-asparaginases from E. coli and their action against tumors. Proceedings of the National Academy of Sciences of the United States of America 56:1516–1519
    [Google Scholar]
  19. Scott J. R. 1974; A turbid plaque-forming mutant of phage P1 that cannot lysogenize Escherichia coli . Virology 62:344–349
    [Google Scholar]
  20. Skinner M. A., Cooper R. A. 1982; An Escherichia coli mutant defective in the NAD-dependent succinate semialdehyde dehydrogenase. Archives of Microbiology 132:270–275
    [Google Scholar]
  21. Umbarger H. E. 1978; Amino acid biosynthesis and its regulation. Annual Review of Biochemistry 47:533–606
    [Google Scholar]
  22. Willis R. C., Woolfolk C. A. 1974; Asparagine utilization in Escherichia coli . Journal of Bacteriology 118:231–241
    [Google Scholar]
  23. Willis R. C., Woolfolk C. A. 1975; l-Asparagine uptake in Escherichia coli . Journal of Bacteriology 123:937–945
    [Google Scholar]
  24. Wu T. T. 1966; A model for three-point analysis of random general transduction. Genetics 54:405–410
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-131-8-2079
Loading
/content/journal/micro/10.1099/00221287-131-8-2079
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error