1887

Abstract

A selection procedure for uracil catabolism mutant strains involving indicator dye plates was developed. Using this method, a strain defective in uracil catabolism has been isolated in that was temperature-sensitive at 42°C where it required low concentrations of -carbamoyl--alanine, -alanine or pantothenic acid for growth. An extract of the mutant strain degraded uracil at 37°C at a significantly diminished rate compared to that observed for the wild-type strain under the same growth conditions. The conversion of dihydrouracil to -carbamoyl--alanine was blocked at all temperatures examined in the mutant strain. By means of genetic analysis, the mutant strain was determined to be defective at two genetic loci. Transduction studies with bacteriophage P22 indicated that the gene is mutated in this strain, accounting for its -alanine requirement. Episomal transfers between and the mutant strain provided evidence that the defect in uracil catabolism was located in another region of the . chromosome.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-131-5-1083
1985-05-01
2022-07-02
Loading full text...

Full text loading...

/deliver/fulltext/micro/131/5/mic-131-5-1083.html?itemId=/content/journal/micro/10.1099/00221287-131-5-1083&mimeType=html&fmt=ahah

References

  1. Bachmann B. J. 1983; Linkage map of Escherichia coli K-12. , 7. Microbiological Reviews 47:180–230
    [Google Scholar]
  2. Bachmann B. J., Low K. B. 1980; Linkage map of Escherichia coli K-l2. , 6. Microbiological Reviews 44:1–56
    [Google Scholar]
  3. Ban J., Vitale L., Kos E. 1972; Thymine and uracil catabolism in Escherichia coli. Journal of General Microbiology 73:267–272
    [Google Scholar]
  4. Campbell L. L. Jr 1957; Reductive degradation of pyrimidines. II. Mechanism of uracil degradation by Clostridium uracilicum. Journal of Bacteriology 73:225–229
    [Google Scholar]
  5. Cronan J. E. Jr 1980; β-Alanine synthesis in Escherichia coli. Journal of Bacteriology 141:1291–1297
    [Google Scholar]
  6. Cronan J. E. Jr, Littel K. J., Jackowski S. 1982; Genetic and biochemical analyses of panto-thenate biosynthesis in Escherichia coli and Salmonella typhimurium. Journal of Bacteriology 149:916–922
    [Google Scholar]
  7. Davis B. D., Mingioli E. S. 1950; Mutants of Escherichia coli requiring methionine or vitamin B12. Journal of Bacteriology 60:17–28
    [Google Scholar]
  8. Dunn S. D., Snell E. E. 1979; Isolation of temperature-sensitive pantothenate kinase mutants of Salmonella typhimurium and mapping of the coaA gene. Journal of Bacteriology 140:805–808
    [Google Scholar]
  9. Ely B., Weppelman R. M., Massey H. C. Jr, Hartman P. E. 1974; Some improved methods in P22 transduction. Genetics 76:625–631
    [Google Scholar]
  10. Gutnick D., Calvo J. M., Klopotowski T., Ames B. N. 1969; Compounds which serve as the sole source of carbon or nitrogen for Salmonella typhimurium LT2. Journal of Bacteriology 100:215–219
    [Google Scholar]
  11. Hilton M. G., Mead G. C., Elsden S. R. 1975; The metabolism of pyrimidines by proteolytic clostridia. Archives of Microbiology 102:145–149
    [Google Scholar]
  12. Jones M. E., Kavipurapu P., Traut T. W. 1978; Orotate phosphoribosyltransferase: orotidylate de-carboxylase (Ehrlich ascites cell). Methods in Enzymology 51:155–167
    [Google Scholar]
  13. Kaspari H. 1981; Repression of β-ureidopropionase by ammonia in Rhodopseudomonas capsulata. Journal of General Microbiology 122:95–100
    [Google Scholar]
  14. Kelln R. A., Kinahan J. J., Foltermann K. F., O’ Donovan G. A. 1975; Pyrimidine biosynthetic enzymes of Salmonella typhimurium, repressed specifically by growth in the presence of cytidine. Journal of Bacteriology 124:764–774
    [Google Scholar]
  15. Kramer J., Kaltwasser H. 1969; Verwertung von Pyrimidinderivaten durch Hydrogenomonasfacilis. I. Intermediarprodukte und Enzyme des Cytosin-abbaues. Archiv für Mikrobiologie 68:227–235
    [Google Scholar]
  16. Low B. 1968; Formation of merodiploids in matings with a class of Rec recipient strains of Escherichia coli K12. Proceedings of the National Academy of Sciences of the United States of America 60160–167
    [Google Scholar]
  17. Miller J. H. 1972 Experiments in Molecular Genetics138 Cold Spring Harbor, New York: Cold Spring Harbor Laboratory;
    [Google Scholar]
  18. Milstein O. A., Bekker M. L. 1976; Utilization of exogenous pyrimidines as a source of nitrogen by cells of the yeast Rhodotorula glutinis. Journal of Bacteriology 127:1–6
    [Google Scholar]
  19. Movva N. R., Katz E., Asdourian P. L., Hirota Y., Inouye M. 1978; Gene dosage effects of the structural gene for a lipoprotein of the Escherichia coli outer membrane. Journal of Bacteriology 133:81–84
    [Google Scholar]
  20. O’Donovan G. A., Gerhart J. C. 1972; Isolation and partial characterization of regulatory mutants of the pyrimidine pathway in Salmonella typhimurium. Journal of Bacteriology 109:1085–1096
    [Google Scholar]
  21. Ortega M. V., Cardenas A., Ubiera D. 1975; panD, a new chromosomal locus of Salmonella typhimurium for the biosynthesis of β-alanine. Molecular and General Genetics 140:159–164
    [Google Scholar]
  22. Primerano D. A., Burns R. O. 1983; Role of acetohydroxy acid isomeroreductase in biosynthesis of pantothenic acid in Salmonella typhimurium. Journal of Bacteriology 153:259–269
    [Google Scholar]
  23. Sanderson K. E., Demerec M. 1965; The linkage map of Salmonella typhimurium. Genetics 51:897–913
    [Google Scholar]
  24. Sanderson K. E., Roth J. R. 1983; Linkage map of Salmonella typhimurium. , VI. Microbiological Reviews 41:410–453
    [Google Scholar]
  25. Traut T. W., Loechel S. 1984; Pyrimidine catabolism: individual characterization of the three sequential enzymes with a new assay. Biochemistry 23:2533–2539
    [Google Scholar]
  26. Vogels G. D., van der Drift C. 1976; Degradation of purines and pyrimidines by microorganisms. Bacteriological Reviews 40:403–468
    [Google Scholar]
  27. Wasternack C., Lippman G., Reinbotte H. 1979; Pyrimidine-degrading enzymes. Purification and properties of β-ureidopropionase of Euglena gracilis. Biochimica et biophysica acta 570:341–351
    [Google Scholar]
  28. Williamson J. M., Brown G. M. 1979; Purification and properties of L-aspartate-α-decarboxylase, an enzyme that catalyzes the formation of β-alanine in Escherichia coli. Journal of Biological Chemistry 254:8074–8082
    [Google Scholar]
  29. Woodward V. W., Munkres K. D., Suyama Y. 1957 Uracil metabolism in Neurospora crassa. Experientia 13:484–486
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-131-5-1083
Loading
/content/journal/micro/10.1099/00221287-131-5-1083
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error