1887

Abstract

The energy-based classification of heterotrophic substrates requires biochemical evaluation because some substrates can be assimilated by a variety of different metabolic pathways. By using the -concept it was shown that the classification depends on the yield of ATP and reducing equivalents already generated on the way to the precursor (phosphoglycerate). With carbon-excess substrates a part of the total substrate consumed must be oxidized to completion merely for energy production, whereas with energy-excess substrates more energy is provided on the route to the precursor than is needed for assimilation of the precursor carbon. By means of this approach it was possible to assess experimental growth yields obtained on mixed substrates and to predict the optimum mixing proportion in order to attain the maximum carbon conversion efficiency. The validity of this method was shown for some examples.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-131-1-39
1985-01-01
2024-04-26
Loading full text...

Full text loading...

/deliver/fulltext/micro/131/1/mic-131-1-39.html?itemId=/content/journal/micro/10.1099/00221287-131-1-39&mimeType=html&fmt=ahah

References

  1. Anthony C. 1978; The prediction of growth yields in methylotrophs. Journal of General Microbiology 104:91–104
    [Google Scholar]
  2. Anthony C. 1980; Methanol as substrate: theoretical aspects. Hydrocarbons in Biotechnology35–57 Harrison D. E. F., Higgins I. J., Watkinson R. London: Heyden;
    [Google Scholar]
  3. Anthony C. 1982 The Biochemistry of Methylotrophs London: Academic Press;
    [Google Scholar]
  4. Anthony C. 1983; Methanol assimilation and growth yields in methylotrophic bacteria. Acta biotechnologica 3:261–268
    [Google Scholar]
  5. Babel W. 1979; Bewertung von Substraten für das mikrobielle Wachstum auf der Grundlage ihres Kohlenstoff/Energie-Verhältnisses. Zeitschrift für allgemeine Mikrobiologie 19:671–677
    [Google Scholar]
  6. Babel W. 1980; Mischsubstratfermentation - ein energetisch begrundetes Konzept. Acta biotechnologica 0:61–64
    [Google Scholar]
  7. Babel W. 1982; Energetische und biochemische Aspekte der Mischsubstratfermentation. Abhand-lungen der Akademie der Wissenschaften der DDR, N2 Biotechnology183–188 Ringpfeil M. Berlin: Akademie Verlag;
    [Google Scholar]
  8. Babel W. 1983; The auxiliary substrate concept – an approach to improving the growth yield in SCP production. Proceedings of the 3rd Symposium of Socialist Countries on BiotechnologyBratislava CSSR;
    [Google Scholar]
  9. Babel W., Müller R. H., Markuske K. D. 1983; Improvement of growth yield of yeast on glucose to the maximum by using an additional energy source. Archives of Microbiology 136:203–208
    [Google Scholar]
  10. Dijkhuizen L., Harder W. 1979a; Regulation of autotrophic and heterotrophic metabolism in Pseudomonas oxalaticus OX 1. Growth on mixtures of acetate and formate in continuous culture. Archives of Microbiology 123:47–53
    [Google Scholar]
  11. Dijkhuizen L., Harder W. 1979b; Regulation of autotrophic and heterotrophic metabolism in Pseu-domonas oxalaticus OX 1. Growth on mixtures of oxalate and formate in continuous culture. Archives of Microbiology 123:55–63
    [Google Scholar]
  12. Eggeling L., & Sahm H. 1981; Enhanced utilization rate of methanol during growth on a mixed substrate: A continuous culture study with Hansenula polymorpha . Archives of Microbiology 130:362–365
    [Google Scholar]
  13. Egli T., Kappeli A., Fiechter A. 1982; Regulatory flexibility of methylotrophic yeasts in chemostat culture: Simultaneous assimilation of glucose and methanol at a fixed dilution rate. Archives of Microbiology 131:1–7
    [Google Scholar]
  14. Egli T., Lindley N. D., Quayle J. R. 1983; Regulation of enzyme synthesis and variation of residual methanol concentration during carbon-limited growth of Kloeckera sp. 2201 on mixtures of methanol and glucose. Journal of General Microbiology 129:1269–1281
    [Google Scholar]
  15. Feiler E., Becker U., Schneider J. 1980; Verhefung von Ethanol-Saccharose-Gemischen unter kontinuierlichen Fermentationsbedingungen. Abstracts of the 2nd Symposium of Socialist Countries on BiotechnologyLeipzig GDR;
    [Google Scholar]
  16. Goldberg I. 1981; Single-cell protein (SCP) from methanol by bacteria : Microbiological and engineering process aspects. Advances in Biotechnology 2419–424 Moo-Young M., Robinson C. W. Toronto: Pergamon Press;
    [Google Scholar]
  17. Harder W., Dijkhuizen L. 1982; Strategies of mixed substrate utilization in micro-organisms. Philosophical Transactions of the Royal Society London B297:459–480
    [Google Scholar]
  18. Hazeu W., Donker R. A. 1983; A continuous culture study of methanol and formate utilization by the yeast Pichiapastoris . Biotechnology Letters 5:399–404
    [Google Scholar]
  19. Heinritz B., Stichel E., Rogge G., Bley T., Glombitza F. 1982; Theoretische Bestimmung energetischer Wirkungsgrade der mikrobiellen Sub-stratwandlung und Vergleich mit experimentellen Werten an Phasenkulturen. Zeitschrift für allgemeine Mikrobiologie 22:534–544
    [Google Scholar]
  20. Hofmann K. H., Babel W. 1980; Dihydroxy-acetone kinase of methanol-assimilating yeast. I. Regulation of dihydroxyacetone kinase from Candida methylica in situ. Zeitschrift für allgemeine Mikrobiologie 20:389–398
    [Google Scholar]
  21. Lebeault, J. M. 1979; Alkanes and highly reduced substrates for bacterial and yeast growth. Dechema Monographic 831704-1723135–145 Weinheim: Verlag Chemie;
    [Google Scholar]
  22. Linton J. D., Stephenson R. J. 1978; A preliminary study on growth yields in relation to the carbon and energy content of various organic growth substrates. FEMS Microbiology Letters 3:95–98
    [Google Scholar]
  23. Linton J. D., Griffiths K., Gregory M. 1981; The effect of mixtures of glucose and formate on the yield and respiration of a chemostat culture of Beneckea natriegens . Archives of Microbiology 129:119–122
    [Google Scholar]
  24. Malashenko Yu. R., Romanovskaya V. A., Sokolov I. N., Krystab T. P., Lyndvychenko O. S. 1980; Theoretical evaluation of necessity of carbon dioxide assimilation by micro-organisms during growth on various substrates. Ukrainian Biochemical Journal 52:159–163
    [Google Scholar]
  25. Müller R. H., Babel W. 1984; Glucose as an auxiliary substrate. The influence of its carbon catabolism on the maximum carbon conversion efficiency. Applied Microbiology and Biotechnology 20:195–200
    [Google Scholar]
  26. Müller R. H., Markuske K. D., Babel W. 1983; Verbesserung der K-Werte bei Wachstum von Hansenula polymorpha auf Methanol durch simultane Verwertung von Glucose. Zeitschrift für allgemeine Mikrobiologie 23:375–384
    [Google Scholar]
  27. Papoutsakis E., Lim H. C. 1981; Single cell protein production on C, compounds. The bioefficiency. Industrial and Engineering Chemistry Fundamentals 20:307–314
    [Google Scholar]
  28. Payne W. J. 1970; Energy yields and growth of heterotrophs. Annual Review of Microbiology 24:17–32
    [Google Scholar]
  29. Stouthamer A. H. 1973; A theoretical study on the amount of ATP required for synthesis of microbial cell material. Antonie van Leeuwenhoek 39:545–565
    [Google Scholar]
  30. Stouthamer A. H. 1979; The search for correlation between theoretical and experimental growth yields. International Review of Biochemistry 21 Microbial Biochemistry1–47 Quayle J. R. Baltimore: University Park Press;
    [Google Scholar]
  31. Stouthamer A. H. 1980; Energetic regulation of microbial growth. Vierteljahrsschrift der Naturfor-schenden Gesellschaft in Zürich 125:43–60
    [Google Scholar]
  32. Stouthamer A. H., Bettenhausen C. 1973; Utilization of energy for growth and maintenance in continuous and batch culture of microorganisms. Biochimica et biophysica acta 301:53–70
    [Google Scholar]
  33. Sukatsch D. A., Faust U. 1977; Berechnung von Ertragskoeffizienten von Kohlenwasserstoff Fermentationen. Dechema Monographic 811670-1692197–215 Weinheim: Verlag Chemie;
    [Google Scholar]
  34. Suomalainen H., Oura E. 1979; Ethanol as substrate for baker’s yeast. Dechema Monographic 831704-172343–52 Weinheim: Verlag Chemie;
    [Google Scholar]
  35. Van Dijken J. R., Harder W. 1975; Growth yields of microorganisms on methanol and methane. A theoretical studv. Biotechnology and Bioengineering 17:15–30
    [Google Scholar]
  36. Van Verseveld H. W., Stouthamer A. H. 1978; Growth yields and the efficiency of oxidative phosphorylation during autotrophic growth of Paracoccus denitrificans on methanol and formate. Archives of Microbiology 118:21–26
    [Google Scholar]
  37. Van Verseveld H. W., Stouthamer A. H. 1980; Two-(carbon) substrate-limited growth of Paracoccus denitrificans on mannitol and formate. FEMS Microbiology Letters 7:207–211
    [Google Scholar]
  38. Van Verseveld H. W., Boon J. P., Stouthamer A. H. 1979; Growth yields and the efficiency of oxidative phosphorylation of Paracoccus denitrificans during two-(carbon) substrate-limited growth. Archives of Microbiology 121:213–223
    [Google Scholar]
  39. Waites M. J., Quayle J. R. 1983; Dihydroxyacetone synthase a special transketolase for formaldehyde fixation from the methylotrophic yeast Candida boidinii CBS 5777. Journal of General Microbiology 129:935–944
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-131-1-39
Loading
/content/journal/micro/10.1099/00221287-131-1-39
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error