1887

Abstract

Gram-negative micro-organisms possess only a very thin murein sacculus to resist the stress caused by the internal hydrostatic pressure. The sacculus consists of at most one molecular layer of peptidoglycan in an extended conformation. It must grow by the insertion and cross-linking of new murein to the old before the selective cleavages of the stress-bearing murein are made which allow wall enlargement. Since insertion of new murein occurs all over the surface of (even in completed poles), the internal pressure would tend to force the cells into a spherical shape and prevent both cylindrical elongation and cell division. Of course, Gram-negative bacteria do achieve a variety of shapes and do divide. Because prokaryote cells, unlike eukaryotic cells, do not have cytoskeletons and contractile proteins to transduce biochemical free energy into the mechanical work needed to achieve aspherical shapes and to divide, this paradox seems to be resolvable only by postulating that the details of the biochemical mechanism for wall growth vary in different regions of the surface, affecting the work required to enlarge the wall locally. Depending on the degree and rate of change in the biochemical energetics, it is possible to account for rod and the other more complex shapes of Gram-negative bacteria. Division occurs in Gram-negative organisms by the development of constrictions that progressively invade the cytoplasm. The work to cause these morphological processes must ultimately derive from the biochemical process of the stress-bearing wall formation. A biophysical basis for cell division in these prokaryotic organisms is proposed.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-130-9-2325
1984-09-01
2021-07-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/130/9/mic-130-9-2325.html?itemId=/content/journal/micro/10.1099/00221287-130-9-2325&mimeType=html&fmt=ahah

References

  1. Borsook H. 1953; Peptide bond formation. Advances in Protein Chemistry 8:127–174
    [Google Scholar]
  2. Braun V. 1975; Covalent lipoprotein from the outer membrane of Escherichia coli. Biochimica et bio- physica acta 415:335–377
    [Google Scholar]
  3. Braun V., Gnirke H., Henning U., Rehn K. 1973; Model for the structure of the shape- maintaining layer of the Escherichia coli cell envelope. Journal of Bacteriology 114:1264–1270
    [Google Scholar]
  4. Burdett I. D. J, Koch A. L. 1984; Shape of nascent and completed poles of Bacillus subtilis. Journal of General Microbiology 130:1711–1722
    [Google Scholar]
  5. Burdett I. D. J, Murray R. G. E. 1974a; Septum formation in Escherichia coli: characterization of septal structures and the effect of antibiotics on cell division. Journal of Bacteriology 119:303–324
    [Google Scholar]
  6. Burdett I. D. J, Murray R. G. E. 1974b; Electron microscope studies of septum formation in Eschericia coli strains B and B/r during synchronous growth. Journal of Bacteriology 119:1039–1956
    [Google Scholar]
  7. Burman L. G., Raicher J., Park J. T. 1983a; Evidence for diffuse growth of the cylindrical portion of the Escherichia coli murein sacculus. Journal of Bacteriology 155:983–988
    [Google Scholar]
  8. Burman L. G., Reichler J., Park J. T. 1983b; Evidence for multisite growth of Escherichia coli murein involving concomitant endopeptidase and transpeptidase. Journal of Bacteriology 156:386–392
    [Google Scholar]
  9. Dowell M. 1972; The ‘Pegasus’ method for computing the root of an equation. Nordisk tiedskrift for informations behandlung 12:503–508
    [Google Scholar]
  10. Fruton J. S. 1982; Protein-catalyzed synthesis of peptide bond. Advances in Enzymology 53:239–306
    [Google Scholar]
  11. Goodell E. W., Schwarz U. 1983; Cleavage and resynthesis of peptide cross bridges in Escherichia coli murein. Journal of Bacteriology 156:136–140
    [Google Scholar]
  12. Goodell E. W., Markiewicz Z. W., Schwarz U. 1983; Absence of oligomeric murein intermediates in Escherichia coli. Journal of Bacteriology 156:130–135
    [Google Scholar]
  13. Harold F. M. 1983; Pumps and currents: A biological perspective. Current Topics in Membranes and Transport 16:485–576
    [Google Scholar]
  14. Koch A. L. 1982a; The shape of hyphal tips of fungi. Journal of General Microbiology 128:947–951
    [Google Scholar]
  15. Koch A. L. 1982b; On the growth and form of Escherichia coli. Journal of General Microbiology 128:2527–2540
    [Google Scholar]
  16. Koch A. L. 1983; The surface stress theory of microbial morphogenesis. Advances in Microbial Physiology 24:301–367
    [Google Scholar]
  17. Koch A. L., Higgins M. L., Doyle R. J. 1981a; Surface tension-like forces determine bacterial shapes: Streptococcus faecium. Journal of General Microbiology 123:151–161
    [Google Scholar]
  18. Koch A. L., Mobley H. L. T, Doyle R. J., Streips U. N. 1981b; The coupling of wall growth and chromosome replication in Gram-positive rods. FEMS Microbiology Letters 12:201–208
    [Google Scholar]
  19. Koch A. L., Higgins M. L., Doyle R. J. 1982a; Surface stress theory of bacterial shapes. Journal of General Microbiology 128:927–946
    [Google Scholar]
  20. Koch A. L., Verwer R. W. H, Nanninga N. 1982b; Incorporation of diaminopimelic acid into the old poles of Esoherichia coli. Journal of General Microbiology 128:2893–2898
    [Google Scholar]
  21. Mirelman D. 1978; Biosynthesis and assembly of cell wall peptidoglycan. In Bacterial Outer Membranes pp. 115–166 Inouye M. Edited by New York: John Wiley;
    [Google Scholar]
  22. Nanninga N., Woldringh C. L., Koppes L. J. H. 1981; Growth and division of Escherichia coli. . In Cell Growth pp. 225–270 Nicolini C. Edited by New York: Plenum.;
    [Google Scholar]
  23. Oldmixon E. H., Glauser S., Higgins M. L. 1974; Two proposed general configurations for bacterial cell wall peptidoglycans shown by spacefilling molecular models. Biopolymers 13:2037–2060
    [Google Scholar]
  24. Olijhoek A. J. M, Klencke S., Pas E., Nanninga N., Schwarz U. 1982; Volume growth, murein synthesis, and murein cross-linkage during the division cycle of Escherichia coli PA3097. Journal of Bacteriology 152:1248–1254
    [Google Scholar]
  25. Rogers H. J., Perkins J. R., Ward J. B. 1980 Microbial Cell Walls and Membranes. London: Chapman and Hall;
    [Google Scholar]
  26. Schwarz U., Ryter A., Ramboek A., Hellio R., Hirota Y. 1975; Process of cellular division in Escherichia coli: Differentiation of growth zones in the sacculus. Journal of Molecular Biology 98:749–759
    [Google Scholar]
  27. Spratt B. G. 1975; Distinct penicillin binding proteins involved in division, elongation, and shape of Escherichia coli. Proceedings of the National Academy of Sciences of the United States of America 72:2099–3003
    [Google Scholar]
  28. Thompson, D’ARCY W. 1942 On Growth and Form, 2nd edn.. Cambridge; Cambridge University Press:
    [Google Scholar]
  29. Woldringh C. L., Dejong M. A., Van DEN BERG W., Koppes L. J. H. 1977; Morphological analysis of the division cycle of two Escherichia coli substrains during slow growth. Journal of Bacteriology 131:270–279
    [Google Scholar]
  30. Zaritsky A., Woldringh C. L., Mirelman D. 1979; Constant density of the sacculus of Escherichia coli B/r growing at different rates. FEBS Letters 98:29–32
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-130-9-2325
Loading
/content/journal/micro/10.1099/00221287-130-9-2325
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error