1887

Abstract

API 20E, API ZYM and eight other enzymic API systems were tested on 123 strains belonging to 18 species, six strains and 22 reference strains belonging to other phytopathogenic genera and other enterobacterial species. The data obtained, from a total of 130 tests, were subjected to numerical analysis. Test reproducibility within the API 20E system varied from 88 to 100%. The numerical analysis revealed 12 phenons; in six of these phenons two or three subphenons could be differentiated. Several of these (sub)phenons corresponded to established species and could be differentiated from each other by 25 characters. No clearcut distinction could be made between the ‘amylovora’, ‘carotovora’ and ‘herbicola’ groups. Seven phenons were further analysed with the API 50CHE system. The results provided evidence for the retention of as separate taxa and supported the synonymy within the pairs and and subsp. and subsp. and one of the clusters. The inadequacy of the present classification of several species, such as and , is highlighted. The results show that API systems are a useful and rapid alternative to conventional phenotypical testing for the classification and identification of species.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-130-8-1893
1984-08-01
2021-07-24
Loading full text...

Full text loading...

/deliver/fulltext/micro/130/8/mic-130-8-1893.html?itemId=/content/journal/micro/10.1099/00221287-130-8-1893&mimeType=html&fmt=ahah

References

  1. Aldridge K. E., Gardner B. B., Clark S. S., Matsen J. M. 1978; Comparison of Micro-ID, API 20E, and conventional media systems in identification of Enterobacteriaceae. Journal of Clinical Microbiology 7:507–513
    [Google Scholar]
  2. Anonymous 1977 Catalogue of Cultures in the National Collection of Plant Pathogenic Bacteria, 1st edn.. Harpenden:: Ministry of Agriculture, Fisheries and Food.;
    [Google Scholar]
  3. Azad H. R., Kado C. I. 1980; Numerical and DNA :DNA reassociation analyses of Erwinia rubrifaciens and other members of the Enterobacteriaceae. Journal of General Microbiology 120:117–129
    [Google Scholar]
  4. Blackall P. J. 1980; Evaluation of a multi-test microtube system for the identification of veterinary isolates of Enterobacteriaceae. Veterinary Microbiology 5:229–237
    [Google Scholar]
  5. Blazevic D. J., Trombley C. M., Lund M. E. 1976; Inoculation of API-20E from positive blood cultures. Journal of Clinical Microbiology 4:522–523
    [Google Scholar]
  6. Brenner D. J. 1981; The genus Enterobacter. In The Procaryotes II pp. 1173–1180 Starr M. P., Stolp H., Trüper H. G., Balows A., Schlegel H. G. Edited by Berlin, Heidelberg & New York: Springer- Verlag;
    [Google Scholar]
  7. Brenner D. J., Fanning G. R., Steigerwalt A. G. 1972; Deoxyribonucleic acid relatedness among species of Erwinia and between Erwinia species and other enterobacteria. Journal of Bacteriology 110:12–17
    [Google Scholar]
  8. Brenner D. J., Steigerwalt A. G., Miklos G. V., Fanning G. R. 1973; Deoxyribonucleic acid relatedness among erwiniae and other Enterobacteriaceae : the soft-rot organisms (genus Pectobacterium Waldee). International Journal of Systematic Bacteriology 23:205–216
    [Google Scholar]
  9. Brenner D. J., Fanning G. R., Steigerwalt A. G. 1974; Deoxyribonucleic acid relatedness among erwiniae and other Enterobacteriaceae: the gall, wilt, and dry-necrosis organisms (genus Erwinia Winslow et al, sensu stricto). International Journal of Systematic Bacteriology 24:197–204
    [Google Scholar]
  10. Brenner D. J., Fanning G. R., Leete Knutson J. K., Steigerwalt A. G., Krichevsky M. I. 1984; Attempts to classify Herbicola group - Enterobacter agglomerans strains by deoxyribonucleic acid hybridization and phenotypic tests. International Journal of Systematic Bacteriology 34:45–55
    [Google Scholar]
  11. Butler D. A., Lobregat C. M., Gavan T. L. 1975; Reproducibility of the Analytab (API 20E) system. Journal of Clinical Microbiology 2:322–326
    [Google Scholar]
  12. De Smedt J., De Ley J. 1979; Identification of Ruiter's strains, isolated from browned marinated herring, as members of Erwinia herbicola. International Journal of Systematic Bacteriology 29:183–187
    [Google Scholar]
  13. Devenish J. A., Barnum D. A. 1980; Evaluation of API 20E system and Encise Enterotube for the identification of Enterobacteriaceae of animal origin. Canadian Journal of Comparative Medicine 44:315–319
    [Google Scholar]
  14. De Vos P., Kersters K., De Ley J. 1980; Identification of the leaf nodule bacterial strain PeH,20 as Erwinia herbicola subsp. herbicola. Zentralblatt für Bakteriologie, Mikrobiologie und Hygiene (Abteilung I, Originate C) 1:237–242
    [Google Scholar]
  15. Dickey R. S., Victoria J. L. 1980; Taxonomy and emended description of strains of Erwinia isolated from Musa paradisiaca Linnaeus. International Journal of Systematic Bacteriology 30:129–134
    [Google Scholar]
  16. Dye D. W. 1964; The taxonomic position of Xanthomonas trifolii (Huss, 1907) James, 1955. New Zealand Journal of Science 7:261–269
    [Google Scholar]
  17. Dye D. W. 1968; A taxonomic study of the genus Erwinia. I. The ‘amylovora’ group. New Zealand Journal of Science 11:590–607
    [Google Scholar]
  18. Dye D. W. 1969a; A taxonomic study of the genus Erwinia. II. The ‘carotovora’ group. New Zealand Journal of Science 12:81–97
    [Google Scholar]
  19. Dye D. W. 1969; b. A taxonomic study of the genus Erwinia. III. The 4herbicola’ group. New Zealand Journal of Science 12:223–236
    [Google Scholar]
  20. Dye D. W. 1969; c. A taxonomic study of the genus Erwinia. IV. ‘Atypical’ erwinias. New Zealand Journal of Science 12:833–839
    [Google Scholar]
  21. Dye D. W. 1981; A numerical taxonomic study of the genus Erwinia. New Zealand Journal of Agricultural Research 24:223–229
    [Google Scholar]
  22. Ewing W. H., Fife M. A. 1972; Enterobacter agglomerans (Beijerinck) comb. nov. (the herbicola-lathyri bacteria). International Journal of Systematic Bacteriology 22:4–11
    [Google Scholar]
  23. Frank S. K., Gerber J. D. 1981; Hydrolytic enzymes of Moraxeila bovis. Journal of Clinical Microbiology 13:269–271
    [Google Scholar]
  24. Freeman J. W., Rowland R. W., Overman S. B., Goodman N. L. 1981; Laboratory evaluation of the AutoMicrobic system for identification of Enterobacteriaceae. Journal of Clinical Microbiology 13:895–898
    [Google Scholar]
  25. Gardner J. M., Kado C. I. 1972; Comparative base sequence homologies of the deoxyribonucleic acids of Erwinia species and other Enterobacteriaceae. International Journal of Systematic Bacteriology 22:201–209
    [Google Scholar]
  26. Gauthier M. J. 1976; Alteromonas rubra sp. nov., a new marine antibiotic-producing bacterium. International Journal of Systematic Bacteriology 26:459–466
    [Google Scholar]
  27. Gavini F., Lefebvre B., Leclerc H. 1983; Étude taxonomique de souches appartenant ou apparentées au genre Erwinia, groupe herbicola, et à l’espèce Enterobacter agglomerans. Systematic and Applied Microbiology 4:218–235
    [Google Scholar]
  28. Godsey J. M., Matteo M. R., Shen D., Tolman G. 1981; Rapid identification of Enterobacteriaceae with microbial enzyme activity profiles. Journal of Clinical Microbiology 13:483–490
    [Google Scholar]
  29. Goto M. 1976; Erwinia mallotivora sp. nov., the causal organism of bacterial leaf spot of Mallotus japonicus Muell. Arg. International Journal of Systematic Bacteriology 26:467–473
    [Google Scholar]
  30. Guillermet F. 1980; Fusobacterium fusiforme’ et ‘F. nucleatum’. Annales de microbiologie 131:95–96
    [Google Scholar]
  31. Haahtela K., Wartiovaara T., Sundman V., Skujins J. 1981; Root-associated N2 fixation (acetylene reduction) by Enterobacteriaceae and Azospirillum strains in cold-climate spodosols. Applied and Environmental Microbiology 41:203–206
    [Google Scholar]
  32. Holmes B., Willcox W. R., Lapage S. P., Malnick H. 1977; Test reproducibility of the API (20E), Enterotube and Pathotec systems. Journal of Clinical Pathology 30:381–387
    [Google Scholar]
  33. Holmes B., Willcox W. R., Lapage S. P. 1978; Identification of Enterobacteriaceae by the API 20E system. Journal of Clinical Pathology 31:22–30
    [Google Scholar]
  34. Holmes B., Owen R. J., Weaver R. E. 1981; Flavobacterium multivorum, a new species isolated from human clinical specimens and previously known as group IIk, biotype 2. International Journal of Systematic Bacteriology 31:21–34
    [Google Scholar]
  35. Holmes B., Owen R. J., Hollis D. G. 1982; Flavobaterium spiritivorum, a new species isolated from human clinical specimens. International Journal of Systematic Bacteriology 32:157–165
    [Google Scholar]
  36. Humble M. W., King A., Phillips I. 1977; API ZYM: a simple rapid system for the detection of bacterial enzymes. Journal of Clinical Pathology 30:275–277
    [Google Scholar]
  37. Imbs M. A. 1974 Contribution à l’étude de la taxonomie des bactéries du genre Erwinia. PhD thesis Nancy, France.:
    [Google Scholar]
  38. Ingledew W. M., Sivaswamy G., Burton J. D. 1980; The API 20E microtube system for rapid identification of Gram negative brewery bacteria. Journal of the Institute of Brewing 86:165–168
    [Google Scholar]
  39. Kilian M. 1978; Rapid identification of Actinomycetaceae and related bacteria. Journal of Clinical Microbiology 8:127–133
    [Google Scholar]
  40. Lelliott R. A. 1974; Genus XII.Erwinia. In Bergey’s Manual of Determinative Bacteriology, 8th edn.. pp. 332–340 Buchanan R. E., Gibbons N. E. Edited by Baltimore: Williams & Wilkins;
    [Google Scholar]
  41. Lelliott R. A., Dickey R. S. 1984; Genus VII.Erwinia. In Bergey’s Manual of Systematic Bacteriology pp. 469–476 Krieg N. R. Edited by Baltimore: Williams & Wilkins;
    [Google Scholar]
  42. Ljungh Å., Popoff M., WadstrÖm T. 1977; Aeromonas hydrophila in acute diarrheal disease: detection of enterotoxin and biotyping of strains. Journal of Clinical Microbiology 6:96–100
    [Google Scholar]
  43. Logan N. A., Capel B. J., Melling J., Berkeley R. C. W. 1979; Distinction between emetic and other strains of Bacillus cereus using the API system and numerical methods. FEMS Microbiology Letters 5:373–375
    [Google Scholar]
  44. Mergaert J., Kersters K., De Ley J. 1983a; Numerical comparison of protein electrophoregrams from strains of Enterobacter agglomerans (Erwinia herbicola) and allied species. In Gram Negative Bacteria of Medical and Public Health Importance : Taxonomy-Identification-Applications p. 171 Leclerc H. Edited by Paris: Éditions INSERM;
    [Google Scholar]
  45. Mergaert J., Gavini F., Kersters K., Leclerc H., De Ley J. 1983b; Phenotypic and protein electrophoretic similarities between strains of Enterobacter agglomerans, Erwinia herbicola, and Erwinia milletiae from clinical or plant origin. Current Microbiology 8:327–331
    [Google Scholar]
  46. Monget D. 1978 Mise au point d’une microméthode de détection et de mesure d’activites enzymatiques (API ZYM). Résultats obtenus dans differents do-maines d’application. PhD thesis Lyon, France.:
    [Google Scholar]
  47. Murata N., Starr M. P. 1974; Intrageneric clustering and divergence of Erwinia strains from plants and man in the light of deoxyribonucleic acid segmental homology. Canadian Journal of Microbiology 20:1545–1565
    [Google Scholar]
  48. Murray P. R. 1978; Standardization of the Analy- tab Enteric (API 20E) system to increase accuracy and reproducibility of the test for biotype characterization of bacteria. Journal of Clinical Microbiology 8:46–49
    [Google Scholar]
  49. Mutimer M. D., Woolcock J. B. 1982; API-ZYM for identification of Corynebacterium equi. Zentralblatt für Bakteriologie, Mikrobiologie und Hygiene(Abteilung I., Originate C) 3:410–415
    [Google Scholar]
  50. Neilson A. H., Sparell L. 1976; Acetylene reduction (nitrogen fixation) by Enterobacteriaceae isolated from paper mill process waters. Applied and Environmental Microbiology 32:197–205
    [Google Scholar]
  51. O’Donnell A. G., Norris J. R., Berkeley R. C. W, Claus D., Kaneko T., Logan N. A., Nozaki R. 1980; Characterization of Bacillus subtilis, Bacillus pumilis, Bacillus licheniformis, and Bacillus amylo-liquefaciens by pyrolysis gas-liquid chromatography, deoxyribonucleic acid-deoxyribonucleic acid hybridization, biochemical tests, and API systems. International Journal of Systematic Bacteriology 30:448–459
    [Google Scholar]
  52. Roberts P. 1974; Erwinia rhapontici (Millard) Burkholder associated with pink grain of wheat. Journal of Applied Bacteriology 37:353–358
    [Google Scholar]
  53. Rutherford I., Moody V., Gavan T. L., Ayers L. W., Taylor D. L. 1977; Comparative study of three methods of identification of Enterobacteriaceae. Journal of Clinical Microbiology 5:458–464
    [Google Scholar]
  54. Sakazaki R., Tamura K., Johnson R., Colwell R. R. 1976; Taxonomy of some recently described species in the family Enterobacteriaceae. International Journal of Systematic Bacteriology 26:158–179
    [Google Scholar]
  55. Schwan O., Nord C. E., Holmberg O. 1979; Biochemical characterization of unidentified micro- aerophilic cocci isolated from heifer and dry-cow mastitis. Journal of Clinical Microbiology 10:622–627
    [Google Scholar]
  56. Serrano F. B. 1928; Bacterial fruitlet brown-rot of pineapple in the Philippines. Philippine Journal of Science 36:271–305
    [Google Scholar]
  57. Skerman V. B. D, Mcgowan V., Sneath P. H. A. 1980; Approved lists of bacterial names. International Journal of Systematic Bacteriology 30:225–420
    [Google Scholar]
  58. Sneath P. H. A, Sokal R. R. 1973 Numerical Taxonomy. The Principles and Practice of Numerical Classification. San Francisco:: W. H. Freeman.;
    [Google Scholar]
  59. Starr M. P. 1981; The genus Erwinia. In The Procaryotes II pp. 1260–1271 Starr M. P., Stolp H., Trüper H. G., Balows A., Schlegel H. G. Edited by Berlin, Heidelberg & New York: Springer Verlag;
    [Google Scholar]
  60. Starr M. P., Chatterjee A. K. 1972; The genus Erwinia: enterobacteria pathogenic to plants and animals. Annual Review of Microbiology 26:389–426
    [Google Scholar]
  61. Tharagonnet D., Sisson P. R., Roxby C. M., Ingham H. R., Selkon J. B. 1977; The API ZYM system in the identification of Gramnegative anaerobes. Journal of Clinical Pathology 30:505–509
    [Google Scholar]
  62. Thomson S. V., Hildebrand D. C., Schroth M. N. 1981; Identification and nutritional differentiation of the Erwinia sugar beet pathogen from members of Erwinia carotovora and Erwinia chrysanthemi. Phytopathology 71:1037–1042
    [Google Scholar]
  63. Van Vuuren H. J. J, Kersters K., De Ley J., Toerien D. F., Meisel R. 1978; Enterobacter agglomerans - a new bacterial contaminant isolated from lager beer breweries. Journal of the Institute of Brewing 84:315–317
    [Google Scholar]
  64. Waldee E. L. 1945; Comparative studies of some peritrichous phytopathogenic bacteria. Iowa State College Journal of Science 19:435–484
    [Google Scholar]
  65. Westley J. W., Anderson P. J., Close V. A., Halpern B., Lederberg E. M. 1967; Amino-peptidase profiles of various bacteria. Applied Microbiology 15:822–825
    [Google Scholar]
  66. Wishart D. 1978 Clustan. User Manual, 3rd edn.. Program Library Unit. Edinburgh University, Edinburgh.:
    [Google Scholar]
  67. Young J. M., Dye D. W., Bradbury J. F., Panagopoulos C. G., Robbs C. F. 1978; A proposed nomenclature and classification for plant pathogenic bacteria. New Zealand Journal of Agricultural Research 21:153–177
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-130-8-1893
Loading
/content/journal/micro/10.1099/00221287-130-8-1893
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error