
Full text loading...
Cell surface hydrophobicity of group A, B, C, D and G streptococcal strains has been studied and compared in a new test based on the fact that the degree of bacterial aggregation in ammonium sulphate depends on amphiphilic surface antigens. M-positive group A strains showing good growth in normal human blood aggregated in the standard salt aggregation test at very low concentrations of ammonium sulphate, while M-negative strains, which were killed in normal human blood, usually aggregated at high salt concentrations. Agents such as 2 M-KSCN, 2 M-guanidine. HCl or 2 M-urea decreased the aggregation of the M-positive strains in the salt aggregation test while non ionic detergents such as Tween 20 (1%, w/v) and ethylene glycol (2 m) did not affect cell aggregation. Binding of fibrinogen and albumin resulted in a decrease of surface hydrophobicity of the group A M-positive strains. Group B strains possess a hydrophilic surface character and did not aggregate, while group C and G strains behaved in the salt aggregation test like M-negative strains of group A streptococci. Group D strains did not aggregate even at high ammonium salt concentrations. The results are discussed in relation to the influence of lipoteichoic acid and other surface antigens on strains of the various groups, and it is suggested that M protein and possibly also other surface proteins contribute to the high surface hydrophobicity of group A strains.
Article metrics loading...
Full text loading...
References
Data & Media loading...