1887

Abstract

metabolizes sugars via the Entner-Doudoroff and pentose phosphate pathways but does not have a functional Embden-Meyerhof pathway. Although some sugar catabolizing enzymes are constitutive, activities of the ‘Entner-Doudoroff’ enzymes vary with the carbon source. Bacteroids have complete pathways for sugar catabolism even though the specific activities of some enzymes, e.g., glucokinase, are lower than in free-living cells. Tn5-induced mutants lacking glucokinase, fructokinase and pyruvate dehydrogenase have been isolated. Although these mutants are unable to utilize sugars, they all nodulate peas and fix N. The capacity to utilize particular C and C sugars is apparently not essential for bacteroid development or the establishment of effective N fixation.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-130-2-239
1984-02-01
2021-08-03
Loading full text...

Full text loading...

/deliver/fulltext/micro/130/2/mic-130-2-239.html?itemId=/content/journal/micro/10.1099/00221287-130-2-239&mimeType=html&fmt=ahah

References

  1. Berg D. E. 1977; Insertion and excision of the transposable kanamycin resistance determinant. In DNA Insertion Elements, Plasmids, and Episomes pp. 205–212 Bukhari A. I., Shapiro J. A., Adhya S. L. Edited by Cold Spring Harbor, New York:: Cold Spring Harbor Laboratory.;
    [Google Scholar]
  2. Beringer J. E. 1974; R factor transfer in Rhizobium leguminosarum. Journal of General Microbiology 84:188–198
    [Google Scholar]
  3. Beringer J. E., Beynon J. L., Buchanan-Wollaston A. V., Johnston A. W. B. 1978; Transfer of the drug-resistance transposon Tn5 to Rhizobium . Nature; London: 276633–634
    [Google Scholar]
  4. Brown C. M., Dilworth M. J. 1975; Ammonia assimilation by Rhizobium cultures and bacteroids. Journal of General Microbiology 86:39–48
    [Google Scholar]
  5. Buchanan-Wollaston A. V. 1979; Generalized transduction in Rhizobium leguminosarum. Journal of General Microbiology 112:135–142
    [Google Scholar]
  6. Chatterjee A. K., Thurn K. K., Feese D. A. 1983; Tn5-induced mutations in the enterobacterialphytopathogenErwinia chrysanthemi. Applied and Environmental Microbiology 45:644–650
    [Google Scholar]
  7. Duncan M. 1981; Properties of Tn-5 induced carbohydrate mutants of Rhizobium meliloti. Journal of General Microbiology 122:61–67
    [Google Scholar]
  8. Glenn A. R., Brewin N. J. 1981; Succinate- resistant mutants of Rhizobium leguminosarum. Journal of General Microbiology 126:237–241
    [Google Scholar]
  9. Glenn A. R., Dilworth M. J. 1981a; The uptake and hydrolysis of disaccharides by fast- and slow- growing species of Rhizobium. Archives of Microbiology 129:233–239
    [Google Scholar]
  10. Glenn A. R., Dilworth M. J. 1981b; Oxidation of substrates by isolated bacteroids and free-living cells of Rhizobium leguminosarum. Journal of General Microbiology 126:243–247
    [Google Scholar]
  11. Glenn A. R., Poole P. S., Hudman J. F. 1980; Succinate uptake by free-living and bacteroid forms of Rhizobium leguminosarum. Journal of General Microbiology 119:267–271
    [Google Scholar]
  12. Glenn A. R., Arwas R., Mckay I. A., Dilworth M. J. 1984; Fructose metabolism in wild- type, fructokinase-negative and revertant strains of Rhizobium leguminosarum. Journal of General Microbiology 130:231–237
    [Google Scholar]
  13. Hardy R. W. F. 1977; Rate-limiting steps in biological photoproductivity. In Genetic Engineering for Nitrogen Fixation pp. 369–397 Hollaender A. Edited by London:: Plenum Press.;
    [Google Scholar]
  14. Hockenhull D. J. D., Hunter G. D., Herbert M. W. 1953; Separation of derivatives of 2-keto acids by paper chromatography. Chemistry & Industry, 1953; 127:
    [Google Scholar]
  15. Hudman J. F., Glenn A. R. 1980; Glucose uptake by free-living and bacteroid forms of Rhizobium leguminosarum. Archives of Microbiology 128:72–77
    [Google Scholar]
  16. Johnston A. W. B., Beringer J. E. 1975; Identification of the Rhizobium strains in pea root nodules using genetic markers. Journal of General Microbiology 87:343–350
    [Google Scholar]
  17. Jordan D. C. 1962; The bacteroids of the genus Rhizobium. Bacteriological Reviews 26:119–141
    [Google Scholar]
  18. Katznelson H. 1955; Production of pyruvate from 6-phosphogluconate by bacterial plant pathogens and legume bacteria. Nature; London: 175551–552
    [Google Scholar]
  19. Keele B. B., Hamilton P. B., Elkan G. H. 1970; Gluconate catabolism in Rhizobium japonicum. Journal of Bacteriology 101:691–704
    [Google Scholar]
  20. Lynch W. H., Mcleod J., Franklin M. 1975; Effect of temperature on the activity and synthesis of glucose catabolizing enzymes in Pseudomonas fluorescens. Canadian Journal of Microbiology 21:1560–1572
    [Google Scholar]
  21. Meade H. M., Long S. R., Ruvkun G. B., Brown S. E., Ausubel F. M. 1982; Physical and genetic characterization of symbiotic and auxotrophic mutants of Rhizobium meliloti induced by transposon Tn5 mutagenesis. Journal of Bacteriology 149:114–122
    [Google Scholar]
  22. Mulongoy K., Elkan G. H. 1977; Glucose catabolism in two derivatives of a Rhizobium japonicumstrain differing in nitrogen fixing efficiency. Journal of Bacteriology 131:179–187
    [Google Scholar]
  23. Pate J. S. 1977; Functional biology of dinitrogen fixation by legumes. In A Treatise on Dinitrogen Fixation section III pp. 473–518 Hardy R. W. F. Edited by New York:: Wiley Interscience.;
    [Google Scholar]
  24. Reed L. J., Willms C. R. 1966; Purification and resolution of the pyruvate dehydrogenase complex (Escherichia coli). Methods in Enzymology 9:247–253
    [Google Scholar]
  25. Ronson C. W., Primrose S. B. 1979; Carbohydrate metabolism in Rhizobium trifolii: identification and symbiotic properties of mutants. Journal of General Microbiology 112:77–88
    [Google Scholar]
  26. Srivastava S., Urban M., Friedrich B. 1982; Mutagenesis of Alcaligenes eutrophus by insertion of the drug-resistance transposon Tn5. Archives of Microbiology 131:203–207
    [Google Scholar]
  27. Streeter J. G. 1980; Carbohydrates in soybean nodules. II. Distribution of compounds in seedlings during the onset of nitrogen fixation. Plant Physiology 66:471–476
    [Google Scholar]
  28. Trinick M. J., Dilworth M. J., Grounds M. 1976; Factors affecting the reduction of acetylene by root nodules of Lupinus species. New Phytologist 77:359–370
    [Google Scholar]
  29. Whiting P. H., Midgley M., Dawes E. A. 1976; The regulation of transport of glucose, gluconate and 2-oxo-gluconate and of glucose catabolism in Pseudomonas aeruginosa. Biochemical Journal 154:659–668
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-130-2-239
Loading
/content/journal/micro/10.1099/00221287-130-2-239
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error