1887

Abstract

Three DNA-dependent ATPases( phosphohydrolases)can be isolated from cells. We studied these enzymes in a number of mutants deficient in recombination or repair functions()and in competent cells. The mutant studied had lower ATPase II activity, while competent cells had higher ATPase I activity, in comparison with the parental strain not brought to competence.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-130-1-113
1984-01-01
2024-04-26
Loading full text...

Full text loading...

/deliver/fulltext/micro/130/1/mic-130-1-113.html?itemId=/content/journal/micro/10.1099/00221287-130-1-113&mimeType=html&fmt=ahah

References

  1. Abdel-Monem M., Hoffman-Berling H. 1980; DNA unwinding enzymes. Trends in Biochemical Sciences 5:128–130
    [Google Scholar]
  2. Abdel-Monem M., DÜrwald H., Hoffman-Berling H. 1977; DNA unwinding enzyme II of Escherichia coli. II. Characterization of the DNA unwinding activity. European Journal of Biochemistry 79:39–45
    [Google Scholar]
  3. Cunningham R. P., Dasgupta C., Shibata T., Radding C. M. 1980; Homologous pairing in genetic recombination: recA protein makes joint molecules of gapped circular DNA and closed circular DNA. Cell 20:223–235
    [Google Scholar]
  4. Dubnau D. 1982; Genetic transformation in Bacillus subtilis. . In The Molecular Biology of the Bacilli I Bacillus subtilis pp. 147–178 Dubnau D. Edited by New York:: Academic Press.;
    [Google Scholar]
  5. Eisenstadt E., Lange R., Willecke K. 1975; Competent Bacillus subtilis cultures synthesize a denatured DNA binding activity. Proceedings of the National Academy of Sciences of the United States of America 72:323–327
    [Google Scholar]
  6. Falaschi A., Cobianchi F., Riva S. 1980; DNA-binding proteins and DNA-unwinding enzymes in eukaryotes. Trends in Biochemical Sciences 7:154–157
    [Google Scholar]
  7. Ganesan A. T. 1979; Genetic recombination during transformation in Bacillus subtilis: appearance of a deoxyribonucleic acid methylase. Journal of Bacteriology 139:270–279
    [Google Scholar]
  8. Geider K., Hoffman-Berling H. 1981; Proteins controlling the helical structure of DNA. Annual Review of Biochemistry 50:233–260
    [Google Scholar]
  9. Gellert M. 1981; DNA topoisomerases. Annual Review of Biochemistry 50:879–910
    [Google Scholar]
  10. Joenje H., Venema G. 1975; Different nuclease activities in competent and noncompetentBacillus subtilis. Journal of Bacteriology 122:25–33
    [Google Scholar]
  11. Kawamura F., Saito H. 1982; Virulent phage ø1 E1 metB +-mediated transduction dependent on transformation competence in Bacillus subtilis. . In Microbiology 1982 pp. 12–14 Schlessinger D. Edited by Washington, D.C.:: American Society for Microbiology.;
    [Google Scholar]
  12. Kolodner R., Richardson C. C. 1978; Replication of duplex DNA by bacteriophage T7 DNA polymerase and gene 4 protein is accompanied by hydrolysis of nucleoside 5′ triphosphates. Proceedings of the National Academy of Sciences of the United States of America 74:1525–1529
    [Google Scholar]
  13. Kornberg A. 1980 DNA Synthesis pp. 300–307 San Francisco:: W. H. Freeman.;
    [Google Scholar]
  14. Mazza G. 1982; Bacillus subtilis “rec assay” test with isogenic strains. Applied and Environmental Microbiology 34:177–184
    [Google Scholar]
  15. Mazza G., Galizzi A. 1978; The genetics of DNA replication, repair and recombination in Bacillus subtilis. Microbiologica 1:111–135
    [Google Scholar]
  16. Mazza G., Riva S. 1981a; Three deoxyribonucleic acid-dependent adenosine triphosphatases from Bacillus subtilis. Journal of Bacteriology 146:305–311
    [Google Scholar]
  17. Mazza G., Riva S. 1981b; DNA-dependent ATPases from Bacillus subtilis. . In Transformation 1980 pp. 117–128 Polsinelli M., Mazza G. Edited by Oxford:: Cotswold Press.;
    [Google Scholar]
  18. Mazza G., Riva S. 1982; DNA-dependent ATPases in B. subtilis: properties and functions. In Molecular Cloning and Gene Regulation in Bacilli pp. 249–259 Ganesan A. T., Chang S., Hoch J. A. Edited by New York:: Academic Press.;
    [Google Scholar]
  19. Piperno J., Alberts B. M. 1978; An ATP stimulation of T4 DNA polymerase mediated via T4 gene 44/62 and 45 proteins. Journal of Biological Chemistry 253:5174–5179
    [Google Scholar]
  20. Radding C. M. 1981; Recombination activities of E. coli recA protein. Cell 25:3–4
    [Google Scholar]
  21. Riva S., Plevani P. 1980; Proteins and enzymes affecting DNA conformation in bacteria and lower eukaryotes. Microbiologica 3:205–246
    [Google Scholar]
  22. Shibata T., Cunningham R. P., Radding C. M. 1981; Homologous pairing in genetic recombination.Purification and characterization of Escherichia coli recA protein. Journal of Biological Chemistry 256:7557–7564
    [Google Scholar]
  23. Stewart C. R. 1969; Physical heterogeneity among Bacillus subtilis deoxyribonucleic acid molecules carrying particular genetic markers. Journal of Bacteriology 98:1239–1297
    [Google Scholar]
  24. De Vos W. M., Venema G. 1981; Transformation of Bacillus subtilis competent cells: identification of a protein involved in recombination. Molecular and General Genetics 187:439–445
    [Google Scholar]
  25. De Vos W. M., Venema G. 1983; Transformation of Bacillus subtilis competent cells: identification and regulation of the recE gene product. Molecular and General Genetics 190:56–64
    [Google Scholar]
  26. De Vos W. M., De Vries S. C., Venema G. 1983; Cloning and expression of the Escherichia coli recAgene in Bacillus subtilis. Proceedings of the National Academy of Sciences of the United States of America (in the Press)
    [Google Scholar]
  27. Weinstock G. M., Mcentee K., Lehman I. R. 1979; ATP-dependent renaturation of DNA catalyzed by the recA protein of Escherichia coli. Proceedings of the National Academy of Sciences of the United States of America 76:126–130
    [Google Scholar]
  28. Yasbin R. E. 1977a; DNA repair in Bacillus subtilis. I. The presence of an inducible system. Molecular and General Genetics 153:211–218
    [Google Scholar]
  29. Yasbin R. E. 1977b; DNA repair in Bacillus subtilis. II. Activation of the inducible system in competent bacteria. Molecular and General Genetics 153:219–255
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-130-1-113
Loading
/content/journal/micro/10.1099/00221287-130-1-113
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error