1887

Abstract

can be rendered competent for DNA uptake by exposure to a heat shock in the presence of divalent cations. We have studied the influence of variations of the incubation temperature in the competence regimen on the efficiency of competence induction, i.e. the efficiency of uptake of DNA into a DNAase resistant form. For cells grown at 37 °C DNA uptake occurs (1) during a heat shock from 0 °C to temperatures between 15 °C and 42 °C (optimal, 30 °C) and (2) after a heat shock from 0 °C to temperatures between 20 °C and 42 °C (optimal, 32 °C) and a subsequent cold shock to 0 °C. Under the latter conditions DNA uptake occurs during incubation of the transformation mixture at 0 °C after the heat shock. In both cases the efficiency of DNA uptake increases as the incubation temperature during the heat shock increases from about 18 °C to about 32 °C. When recipient cells are grown at 22 °C instead of at 37 °C, the temperature range at which competence induction occurs is shifted by 5 °C to lower temperatures. These results indicate that phase transitions of membrane lipids may play a critical role in induction of competence. When recipient cells are shocked from high temperature to low temperature, leakage of the periplasmic β;-lactamase occurs; the degree of leakage and the efficiency of competence induction are affected similarly by the temperature range of the shock. This observation indicates that phase transition of membrane lipids causes damage to the outer membrane, and that this damage may be essential for induction of competence.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-129-3-663
1983-03-01
2021-08-03
Loading full text...

Full text loading...

/deliver/fulltext/micro/129/3/mic-129-3-663.html?itemId=/content/journal/micro/10.1099/00221287-129-3-663&mimeType=html&fmt=ahah

References

  1. Alphen L.Van, Burnell E., Lugtenberg B. 1980; 31P-Nuclear magnetic resonance and freeze-fracture electron microscopy studies on Escherichia coli. Biochimica et biophysica acta 597:502–517
    [Google Scholar]
  2. Benzinger R., Kleber I., Huskey R. 1971; Transfection of Escherichia coli spheroplasts. I. General facilitation of double stranded DNA infec- tivity by protamine sulfate. Journal of Virology 7:646–650
    [Google Scholar]
  3. Bergmans H. E. N., Kooyman D. M., Hoekstra W. P. M. 1980; Cotransformation of linear chromosomal DNA and plasmid DNA in Escherichia coli. FEMS Microbiology Letters 9:211–214
    [Google Scholar]
  4. Bergmans H. E. N., Van Die I. M., Hoekstra W. P. M. 1981; Transformation in Escherichia coli: stages in the process. Journal of Bacteriology 146:564–570
    [Google Scholar]
  5. Brown M. G. M., Weston A., Saunders J. R., Humphreys G. O. 1979; Transformation of Escherichia coli C600 by plasmid DNA at different phases of growth. FEMS Microbiology Letters 5:219–222
    [Google Scholar]
  6. Burnell E., Alphen L.Van, De Kruijff B. 1980; 31P-Nuclear magnetic resonance and freeze-fracture electron microscopy studies on Escherichia coli. I. Cytoplasmic membrane and total phospholipids. Biochimica et biophysica acta 597:492–501
    [Google Scholar]
  7. Cohen S. N., Chang A. C. Y., Hsu L. 1972; Nonchromosomal antibiotic resistance in bacteria. Genetic transformation of E. coli by R-factor DNA. Proceedings of the National Academy of Sciences of the United States of America 69:2110–2214
    [Google Scholar]
  8. Cosloy S. D., Oishi M. 1973; The nature of the transformation process in Escherichia coli K12. Molecular and General Genetics 124:1–10
    [Google Scholar]
  9. Gerritsen W. J., De Kruijff B., Verkleij A. J., De Gier J., Van Deenen L. L. M. 1980; Ca2+induced isotropic motion and phosphatidylcholine flip-flop in phosphatidylcholine-cardiolipin bilayers. Biochimica et biophysica acta 598:554–560
    [Google Scholar]
  10. Grinius L. 1980; Nucleic acid transport driven by ion gradient across cell membrane. FEBS Letters 113:1–10
    [Google Scholar]
  11. Guthrie G. D., Sinsheimer R. L. 1960; Infection of protoplasts by sub-viral particles of bacteriophage ɸX174. Journal of Molecular Biology 2:297–305
    [Google Scholar]
  12. Haest C. W. M., De Gier J., Van Es G. A., Verkleij A. J., Van Deenen L. L. M. 1972; Fragility of the permeability barrier of Escherichia coli. Biochimica et biophysica acta 288:43–53
    [Google Scholar]
  13. Hegarty. 1940; Sensitivity of Escherichia coli to cold shock during logarithmic phase growth. Journal of Bacteriology 39:475–484
    [Google Scholar]
  14. Hoekstra W. P. M., Dehaan P. G., Bergmans J. E. N., Zuidweg E. M. 1976; Transformation in Escherichia coli K12: relation of linkage to distance between markers. Molecular and General Genetics 145:109–110
    [Google Scholar]
  15. Humphreys G. O., Weston A., Brown M. G. M., Saunders J. R. 1979; Plasmid transformation in Escherichia coli. In Transformation 1978 pp. 254–279 Glover S. W., Butler L. O. Edited by Oxford: Cotswold Press;
    [Google Scholar]
  16. Jones I. M., Primrose S. B., Robinson A., Ellwood D. C. 1981; Effect of growth rate and nutrient limitation on the transformability of Escherichia coli with plasmid deoxyribonucleic acid. Journal of Bacteriology 146:841–846
    [Google Scholar]
  17. Kushner S. R. 1978; An improved method for transformation of Escherichia coli with ColEl derived plasmids. In Genetic Engineering pp. 17–23 Boyer H. W., Nicosia S. Edited by Amsterdam: Elsevier/North Holland;
    [Google Scholar]
  18. Lugtenberg E. J. J., Peters R. 1976; Distribution of lipids in cytoplasmic and outer membranes of Escherichia coli K12. Biochimica et biophysica acta 441:38–47
    [Google Scholar]
  19. Macleod R. A., Calcott P. H. 1976; Cold shock and freezing damage to microbes. Symposia of the Society for General Microbiology 26:81–109
    [Google Scholar]
  20. Mandel M., Higa A. 1970; Calcium dependent bacteriophage DNA infection. Journal of Molecular Biology 53:159–162
    [Google Scholar]
  21. Mandersloot J. G., Gerritsen W. J., Leunissen-Bijvelt J., Van Echteld C. J. A., Noordam P. C., De Gier J. 1981; Ca2+ induced changes in the barrier properties of cardiolipin/phosphatidylcho- line bilayers. Biochimica et biophysica acta 640:106–113
    [Google Scholar]
  22. Nakayama H., Mitsui T., Hishihara M., Kito M. 1980; Relation between growth temperature of Escherichia coli and phase transition temperatures of its cytoplasmic and outer membranes. Biochimica et biophysica acta 601:1–10
    [Google Scholar]
  23. Nichol C. P., Davis J. H., Weeks G., Bloom H. 1980; Quantitative study on the fluidity of Escherichia coli membrane using deuterium magnetic resonance. Biochemistry 19:451–457
    [Google Scholar]
  24. Oishi M., Cosloy S. D. 1972; The genetic and biochemical basis of the transformability of Escherichia coli K12. Biochemical and Biophysical Research Communications 49:1568–1572
    [Google Scholar]
  25. Reynders B., Hoekstra W. P. M., Bergmans H. E. N., Van Die I. M. 1979; Transformation in Escherichia coli. . In Transformation 1978 pp. 113–121 Glover S. W., Butler L. O. Edited by Oxford: Cotswold Press;
    [Google Scholar]
  26. Sabelnikov A. G., Domaradsky I. V. 1981; Effect of metabolic inhibitors on entry of exogenous DNA into Ca2+ treated Escherichia coli cells. Journal of Bacteriology 146:435–443
    [Google Scholar]
  27. Suzuki M., Szalay A. A. 1979; Bacterial transformation using temperature-sensitive mutants deficient in peptidoglycan synthesis. Methods in Enzy-mology 68:331–343
    [Google Scholar]
  28. Verkleij A. 1975 Architecture of biological and artificial membranes as visualized by freeze etching. Ph.D. thesis State University of Utrecht, The Netherlands.:
    [Google Scholar]
  29. Verkleij A. J., De Kruijff B., Ververgaert P.H.J.Th., Tocanne J. I., Van Deenen L. L. M. 1974; The influence of pH, Ca2+ and protein on the thermotropic behaviour of the negatively charged phospholipid, phosphatidylglycerol. Biochimica et biophysica acta 339:432–437
    [Google Scholar]
  30. Wackernagel W. 1973; Genetic transformation in Escherichia coli: the inhibitory role of the recBC DNase. Biochemical and Biophysical Research Communications 51:306–311
    [Google Scholar]
  31. Weston A., Brown M. G. M., Perkins H. R., Saunders J. R., Humphreys G. O. 1981; Transformation of Escherichia coli with plasmid deoxyribonucleic acid: calcium-induced binding of deoxyribonucleic acid to whole cells and to isolated membrane fractions. Journal of Bacteriology 145:780–787
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-129-3-663
Loading
/content/journal/micro/10.1099/00221287-129-3-663
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error