1887

Abstract

fermented glycine as a sole carbon and energy source according to the equation:

4 Glycine + 2HO → 3 Acetate + 2CO + 4NH

The organism required adenine as a supplement and selenium compounds as micronutrients for growth. The molar growth yield on glycine was 6·5 g dry wt. Radiochemical and enzymic investigations revealed a new fermentation pathway for glycine in which 1 mol glycine was completely oxidized to CO and the generated reducing equivalents were used to reduce a further 3 mol glycine to acetate via the glycine reductase system. This reaction was associated with the formation of ATP.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-128-7-1457
1982-07-01
2021-05-09
Loading full text...

Full text loading...

/deliver/fulltext/micro/128/7/mic-128-7-1457.html?itemId=/content/journal/micro/10.1099/00221287-128-7-1457&mimeType=html&fmt=ahah

References

  1. Barker H. A., Volcani B. E., Cardon B. P. 1948; Tracer experiments on the mechanism of glycine fermentation by Diplococcus glycinophilus . Journal of Biological Chemistry 173:803–804
    [Google Scholar]
  2. Barnard G. F., Akhtar M. 1979; Mechanistic and stereochemical studies on the glycine reductase of Clostridium sticklandii . European Journal of Biochemistry 99:593–603
    [Google Scholar]
  3. Bauchop T., Elsden S. R. 1960; The growth of micro-organisms in relation to their energy supply. Journal of General Microbiology 23:457–469
    [Google Scholar]
  4. Beisenherz G., Boltze H. J., Bücher T., Czok R., Garbade K. H., Meyer-Arendt E., Pfleiderer G. 1953; Diphosphofructose-Aldolase, Phosphoglyceraldehyd-Dehydrogenase, Milchsure-Dehydrogenase, Glycerophosphat-Dehydrogenase und Pyruvat-Kinase aus Kaninchenmuskulatur in einem Arbeitsgang. Zeitschrift für Naturforschung 8b:555–577
    [Google Scholar]
  5. Braun K. 1979 Untersuchungen zum autotrophen, heterotrophen und mixotrophen Wachstum von Acetobacterium woodii und Clostridium aceticum. Ph.D. thesis University of Göttingen, F.R.G.:
    [Google Scholar]
  6. Bryant M. P. 1972; Commentary on the Hungate technique for culture of anaerobic bacteria. American Journal of Clinical Nutrition 25:1324–1328
    [Google Scholar]
  7. Cardon B. P., Barker H. A. 1946; Two new amino-acid-fermenting bacteria, Clostridium propionicum and Diplococcus glycinophilus . Journal of Bacteriology 52:629–634
    [Google Scholar]
  8. Cardon B. P., Barker H. A. 1947; Amino acid fermentations by Clostridium propionicum and Diplococcus glycinophilus . Archives of Biochemistry 12:165–180
    [Google Scholar]
  9. Carter J. E., Sagers R. D. 1972; Ferrous ion-dependent L-serine dehydratase from Clostridium acidiurici . Journal of Bacteriology 109:757–763
    [Google Scholar]
  10. Champion A. B., Rabinowitz J. C. 1977; Ferredoxin and formyltetrahydrofolate synthetase: comparative studies with Clostridium acidiurici, Clostridium cylindrosporum, and newly isolated anaerobic uric acid-fermenting strains. Journal of Bacteriology 132:1003–1020
    [Google Scholar]
  11. Costilow R. N. 1977; Selenium requirement for the growth of Clostridium sporogenes with glycine as the oxidant in Stickland reaction systems. Journal of Bacteriology 131:366–368
    [Google Scholar]
  12. Da Fonseca-Wollheim F., Bergmeyer H. U., Gutmann I. 1974; Ammoniak. In Methoden der enzymatischen Analyse, 3rd edn.. pp. 1850–1853 Bergmeyer H. U. Edited by Weinheim: Verlag Chemie;
    [Google Scholar]
  13. Dorn M., Andreesen J. R., Gottschalk G. 1978; Fermentation of fumarate and l-malate by Clostridium formicoaceticum . Journal of Bacteriology 133:26–32
    [Google Scholar]
  14. Douglas H. C. 1951; Glycine fermentation by nongas forming anaerobic micrococci. Journal of Bacteriology 62:517–518
    [Google Scholar]
  15. Dürre P., Andersch W., Andreesen J. R. 1981; Isolation and characterization of an adenineutilizing, anaerobic sporeformer, Clostridium purinolyticum sp.nov. International Journal of Systematic Bacteriology 31:184–194
    [Google Scholar]
  16. Guillaume J., Beerens H., Osteux H. 1956; Production de gaz carbonique et fermentation du glycocolle par Clostridium histolyticum . Annales de l’Institut Pasteur 91:721–726
    [Google Scholar]
  17. Himes R. H., Harmony J. A. K. 1973; Formyl-tetrahydrofolate synthetase. CRC Critical Reviews in Biochemistry 1:501–535
    [Google Scholar]
  18. Hungate R. E. 1969; A roll tube method for cultivation of strict anaerobes. Methods in Microbiology 3B:117–132
    [Google Scholar]
  19. Klein S. M., Sagers R. D. 1962; Intermediary metabolism of Diplococcus glycinophilus. II. Enzymes of the acetate-generating system. Journal of Bacteriology 83:121–126
    [Google Scholar]
  20. Lang E., Lang H. 1972; Spezifische Farbreaktion zum direkten Nachweis der Ameisensäure. Zeitschrift für analytische Chemie 260:8–10
    [Google Scholar]
  21. Leonhardt U., Andreesen J. R. 1977; Some properties of formate dehydrogenase, accumulation and incorporation of 185W-tungsten into proteins of Clostridium formicoaceticum . Archives of Microbiology 115:277–284
    [Google Scholar]
  22. Lindström K. 1980; Peridinium cinctum bioassays of Se in Lake Erken. Archiv für Hydrobiologie 89:110–117
    [Google Scholar]
  23. Lindström K., Rodhe W. 1978; Selenium as a micronutrient for the dinoflagellate Peridinium cinctum fa westii . Mitteilungen der Internationalen Vereinigung für theoretische und angewandte Limnologie 21:168–173
    [Google Scholar]
  24. Mccarty P. L. 1964; Thermodynamics of biological synthesis and growth. Advances in Water and Pollution Research 2:169–199
    [Google Scholar]
  25. Newell P. C., Tucker R. G. 1968; Biosynthesis of the pyrimidine moiety of thiamine. A new route of pyrimidine biosynthesis involving purine intermediates. Biochemical Journal 106:279–287
    [Google Scholar]
  26. O’Brien W. E., Ljungdahl L. G. 1972; Fermentation of fructose and synthesis of acetate from carbon dioxide by Clostridium formicoaceticum . Journal of Bacteriology 109:626–632
    [Google Scholar]
  27. Rabinowitz J. C., Pricer W. E. Jr 1962; Formyltetrahydrofolate synthetase. I. Isolation and crystallization of the enzyme. Journal of Biological Chemistry 237:2898–2902
    [Google Scholar]
  28. Sagers R. D., Gunsalus I. C. 1961; Intermediary metabolism of Diplococcus glycinophilus. I. Glycine cleavage and one-carbon interconversions. Journal of Bacteriology 81:541–549
    [Google Scholar]
  29. Sagers R. D., Klein S. M. 1970; Bicarbonate-glycine exchange (Peptococcus glycinophilus). Methods in Enzymology 17A:970–976
    [Google Scholar]
  30. Sakami W. 1955 Handbook of Isotope Tracer Methods. Cleveland: Case Western Reserve;
    [Google Scholar]
  31. Sardesai V. M., Provido H. S. 1970; The determination of glycine in biological fluids. Clinica chimica acta 29:67–71
    [Google Scholar]
  32. Schleifer K. H., Hammes W. P., Kandler O. 1976; Effect of endogenous and exogenous factors on the primary structures of bacterial peptidoglycan. Advances in Microbial Physiology 13:245–292
    [Google Scholar]
  33. Stadtman T. C. 1970; Glycine reductase system (Clostridium). Methods in Enzymology 17A:959–966
    [Google Scholar]
  34. Stadtman T. C. 1978; Selenium-dependent clostridial glycine reductase. Methods in Enzymology 53:372–382
    [Google Scholar]
  35. Stadtman T. C., Elliott P. 1956; A new ATP-forming reaction: the reductive deamination of glycine. Journal of the American Chemical Society 78:2020–2021
    [Google Scholar]
  36. Stadtman T. C., Elliott P., Tiemann L. 1957; Studies on the enzymic reduction of amino acids. III. Phosphate esterification coupled with glycine reduction. Journal of Biological Chemistry 231:961–973
    [Google Scholar]
  37. Stickland L. H. 1951; The determination of small quantities of bacteria by means of the biuret reaction. Journal of General Microbiology 5:698–703
    [Google Scholar]
  38. Stouthamer A. H. 1969; Determination and significance of molar growth yields. Methods in Microbiology 1:629–663
    [Google Scholar]
  39. Stouthamer A. H. 1979; The search for correlation between theoretical and experimental growth yields. In Microbial Biochemistry, International Review of Biochemistry 21 pp. 1–47 Quayle J. R. Edited by Baltimore: University Park Press;
    [Google Scholar]
  40. Tanaka H., Stadtman T. C. 1979; Selenium-dependent clostridial glycine reductase. Purification and characterization of the two membrane-associated protein components. Journal of Biological Chemistry 254:447–452
    [Google Scholar]
  41. Thauer R. K., Jungermann K., Decker K. 1977; Energy conservation in chemotrophic anaerobic bacteria. Bacteriological Reviews 41:100–180
    [Google Scholar]
  42. Turner D. C., Stadtman T. C. 1973; Purification of protein components of the clostridial glycine reductase system and characterization of protein A as a selenoprotein. Archives of Biochemistry and Biophysics 154:366–381
    [Google Scholar]
  43. Uyeda K., Rabinowitz J. C. 1965; Metabolism of formiminoglycine. Glycine formiminotransferase. Journal of Biological Chemistry 240:1701–1710
    [Google Scholar]
  44. Uyeda K., Rabinowitz J. C. 1967a; Metabolism of formiminoglycine. Formiminotetrahydrofolate cyclodeaminase. Journal of Biological Chemistry 242:24–31
    [Google Scholar]
  45. Uyeda K., Rabinowitz J. C. 1967b; Enzymes of clostridial purine fermentation. Methylenetetra- hydrofolate dehydrogenase. Journal of Biological Chemistry 242:4378–4385
    [Google Scholar]
  46. Van Den Hende C., Oyaert W., Bouchaert J. H. 1963; Metabolism of glycine, alanine, valine, leucine and isoleucine by rumen bacteria. Research in Veterinary Science 4:382–389
    [Google Scholar]
  47. Whiteley H. R., Douglas H. C. 1951; The fermentation of purines by Micrococcus lactilyticus . Journal of Bacteriology 61:605–616
    [Google Scholar]
  48. Wood W. A. 1961; Fermentation of carbohydrates and related compounds. In The Bacteria 2 pp. 59–150 Gunsalus I. C., Stanier R. Y. Edited by New York: Academic Press;
    [Google Scholar]
  49. Wright D. E., Hungate R. E. 1967; Metabolism of glycine by rumen microorganisms. Applied Microbiology 15:152–157
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-128-7-1457
Loading
/content/journal/micro/10.1099/00221287-128-7-1457
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error