1887

Abstract

Ubiquinol-15 can be used as an electron donor for both the conventional cytochrome chain and the chloramphenicol-induced alternative pathway of mitochondria. The oxidation of ubiquinol-15 through the chloramphenicol-induced cyanide-insensitive pathway is not inhibited by antimycin A and is strongly inhibited by salicylhydroxamic acid. In contrast, the oxidation of duroquinol by mitochondria is sensitive to antimycin A under all circumstances, except for some portion which is believed to be a non-enzymic autoxidation reaction. 2-Thenoyltrifluoroacetone, a specific inhibitor of the succinate-ubiquinone oxidoreductase activity of the respiratory chain, was found to be a potent inhibitor of the chloramphenicol-induced alternative oxidase-mediated NADH and ubiquinol-15 oxidation in mitochondria. It may be concluded that 2-thenoyltrifluoroacetone interacts with a specific electron carrier of the alternative oxidase, possibly an iron-sulphur centre associated with an ubisemiquinone.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-126-1-171
1981-09-01
2021-10-21
Loading full text...

Full text loading...

/deliver/fulltext/micro/126/1/mic-126-1-171.html?itemId=/content/journal/micro/10.1099/00221287-126-1-171&mimeType=html&fmt=ahah

References

  1. Ambe K. S., Crane F. L. 1960; Studies on the electron transport system. XXVI. Specificity of coenzyme Q and coenzyme Q derivatives. Biochimica et biophysica acta 43:30–40
    [Google Scholar]
  2. Bertrand H., Pittenger T. H. 1969; Cytoplasmic mutants selected from continuously growing cultures of Neurospora crassa. . Genetics 61:643–659
    [Google Scholar]
  3. Bertrand H., McDougall K. J., Pittenger T. H. 1968; Somatic cell variation during uninterrupted growth of Neurospora in continuous growth tubes. Journal of General Microbiology 50:337–350
    [Google Scholar]
  4. Boveris A., Ostina R., Erecinska M., Chance B. 1971; Reduction of mitochondrial components by durohydroquinone. Biochimica et biophysica acta 245:1–16
    [Google Scholar]
  5. Busenherz G., Bolze H. J., Bücher Th., Czoln R., Garbade K. H., Meyer-Arendt E., Phleiderer G. 1953; Diphosphofructose aldolase, phosphoglycerate dehydrogenase, lactic acid dehydrogenase, glycerophosphate dehydrogenase and pyruvate kinase from muscle. Zeitschrift für Naturforschung 39:59–67
    [Google Scholar]
  6. Dixon M. 1953; Determination of enzyme-inhibitor constants. Biochemical Journal 55:170–171
    [Google Scholar]
  7. Futami A., Hurt E., Hauska G. 1979; Vectorial redox reactions of physiological quinones. I. Re-quirement of a minimum length of the isoprenoid side chain. Biochimica et biophysica acta 547:583–596
    [Google Scholar]
  8. Garland P. B., Chance B., Ernster L., Lee C. P., Wong E. 1966; Flavoproteins of mitochondrial fatty acids oxidation. Proceedings of the National Academy of Sciences of the United States of America 58:1696–1702
    [Google Scholar]
  9. Gornall A. G., Bordawill C. J., David M. M. 1949; Determination of serum proteins by means of the biuret reaction. Journal of Biological Chemistry 177:751–766
    [Google Scholar]
  10. Hanssens L., Von Jagow G., Verachtert H. 1978; Participation of ubiquinone in the cyanideinsensitive respiration of Moniliella tomentosa. . In Functions of Alternative Terminal Oxidases pp. 47–53 Degn H., Lloyd D., Hill G. C. Edited by Oxford: Pergamon Press;
    [Google Scholar]
  11. Hatefi Y., Haavik A. G., Griffiths D. E. 1962; Studies on the electron transfer system. XLI. Reduced coenzyme Q (QH2)-cytochrome c reductase. Journal of Biological Chemistry 237:1681–1685
    [Google Scholar]
  12. Henry M. F., De Troostenbergh J. C., Nyns E. J. 1973; Reversal by Fe3+ of the inhibition by benzhydroxamic acid of the cyanide-insensitive respiration of Candida lipolytica. . Archives internationales dephysiologie et de biochemie 81:971
    [Google Scholar]
  13. Huq S., Palmer J. M. 1978a; The involvement and possible role of quinone in cyanide-resistant respiration. In Plant Mitochondria pp. 225–232 Ducet G., Lance C. Edited by Amsterdam: Elsevier/North-Holland Biomedical Press;
    [Google Scholar]
  14. Huq S., Palmer J. M. 1978b; Isolation of a cyanide-resistant duroquinol oxidase from Arum maculatum mitochondria. FEBS Letters 95:217–220
    [Google Scholar]
  15. Huq S., Palmer J. M. 1978c; Oxidation of durohydroquinone via the cyanide-insensitive respiratory pathway in higher plant mitochondria. FEBS Letters 92:317–320
    [Google Scholar]
  16. Moore A. L., Rupp H. 1978; The interaction of ubisemiquinones with the iron-sulfur center S-3 of succinate dehydrogenase in plant mitochondria. FEBS Letters 93:73–77
    [Google Scholar]
  17. Nelson B. D., Norling B., Persson B., Ernster L. 1971; Studies with ubiquinone depleted submitochondrial particles. Biochemical and Biophysical Research Communications 44:1312–1320
    [Google Scholar]
  18. Palmer J. M. 1976; The organization and regulation of electron transport in plant mitochondria. Annual Review of Plant Physiology 27:133–157
    [Google Scholar]
  19. Ramasarma T., Jayaraman J. 1971; Reverse- phase chromatographic separation of ubiquinone isoprenologs. Methods in Enzymology 17C:165–169
    [Google Scholar]
  20. Rich P. R. 1978; Quinol oxidation in Arum maculatum mitochondria and its application in the assay. Solubilization and partial purification of the alternative oxidase. FEBS Letters 96:252–256
    [Google Scholar]
  21. Rich P. R., Bonner W. D. Jr 1978; The nature and location of cyanide and antimycin resistant respiration in higher plants. In Functions of Alternative Terminal Oxidases pp. 149–158 Degn H., Lloyd D., Hill G. C. Edited by Oxford: Pergamon Press.;
    [Google Scholar]
  22. Rich P. R., Moore A. L., Bonner W. D. Jr 1977; The effects of bathophenantroline, batho- phenantroline-sulphonate and 2-thenoyltrifluoro acetone on Mung-bean mitochondria and submito-chondrial particles. Biochemical Journal 162:205–208
    [Google Scholar]
  23. Rich P. R., Wiegand N. K., Blum H., Moore A. L., Bonner W. D. Jr 1978; Studies on the mechanism of inhibition of redox enzymes by substituted hydroxamic acids. Biochimica et biophysica acta 525:325–337
    [Google Scholar]
  24. Rieske J. S. 1967; Preparation and properties of reduced coenzyme Q-cytochrome c reductase. Methods in Enzymology 10:239–245
    [Google Scholar]
  25. Schonbaum G. R., Bonner W. D. Jr Storey B. T., Bahr J. T. 1971; Specific inhibition of the cyanide-insensitive respiratory pathway in plant mitochondria by hydroxamic acids. Plant Physiology 47:124–128
    [Google Scholar]
  26. Slater E. C., Colpa-Boonstra J. P., Links J. 1961; The oxidation of quinols by mitochondrial preparations. In Quinones in Electron Transport pp. 161–189 Wolstenholme G. E. W., O’Connors C. M. Edited by London: Churchill;
    [Google Scholar]
  27. Solomos T. 1977; Cyanide resistant respiration in higher plants. Annual Review of Plant Physiology 28:279–297
    [Google Scholar]
  28. Takemori S., King T. E. 1964; Coenzyme Q: reversal of inhibition of succinate-cytochrome c reductase by lipophilic compounds. Science 144:852
    [Google Scholar]
  29. Trumpower B. L., Simmons Z. 1978; Diminished inhibition of succinate-cytochrome c reductase activity of resolved reductase complex by thenoyltrifluoroacetone in the presence of antimycin. Biochemical and Biophysical Research Communications 82:289–295
    [Google Scholar]
  30. Trumpower B. L., Simmons Z. 1979; Diminished inhibition of mitochondrial electron transfer from succinate to cytochrome c by thenoyltrifluoroacetone induced by antimycin. Journal of Biological Chemistry 254:4608–4616
    [Google Scholar]
  31. Vanderleyden J., Van Den Eynde E., Verachtert H. 1980a; Nature of the effect of adenosine 5′-monophosphate on the cyanide-in-sensitive respiration in mitochondria of Moniliella tomentosa. . Biochemical Journal 186:309–316
    [Google Scholar]
  32. Vanderleyden J., Peeters C., Verachtert H., Bertrand H. 1980b; Stimulation of the alter-native oxidase of Neurospora crassa by nucleoside phosphates. Biochemical Journal 188:141–144
    [Google Scholar]
  33. Vanderleyden J., Meyers M., Verachtert H. 1980c; Identification of the quinone species in cyanide-insensitive and cyanide-sensitive mito-chondria of Moniliella tomentosa. . Biochemical Journal 192:881–885
    [Google Scholar]
  34. Vogel H. J. 1964; Distribution of lysine pathways among fungi: evolutionary implications. American Naturalist 98:435–466
    [Google Scholar]
  35. VonJagow G., Bohrer C. 1975; Inhibition of electron transfer from ferrocytochrome b to ubiquinone, cytochrome c 1 and duroquinone by antimycin A. Biochimica et biophysica acta 387:409–424
    [Google Scholar]
  36. Weiss H., VonJagow G., Klingenberg M., Bücher T. 1970; Characterization of Neurospora crassa mitochondria prepared with a grind mill. European Journal of Biochemistry 14:75–82
    [Google Scholar]
  37. Wilson S. B. 1971; Studies on the cyanide- insensitive oxidase of plant mitochondria. FEBS Letters 15:49–52
    [Google Scholar]
  38. Ziogas B. N., Georgopoulos S. G. 1979; The effect of carboxin and thenoyltrifluoroacetone on cyanide-sensitive and cyanide-resistant respiration of Ustilago maydis mitochondria. Pesticide Biochemistry and Physiology 11:208–217
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-126-1-171
Loading
/content/journal/micro/10.1099/00221287-126-1-171
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error