1887

Abstract

var. WM was grown in continuous culture under phosphate-limited and under magnesium-limited conditions. Whole cells, cell walls and the isolated wall polymers peptidoglycan, teichoic acid and teichuronic acid were analysed by Curie-point pyrolysis mass spectrometry. Characteristic ion peaks for the wall polymers were established and facilitated the interpretation of the mass pyrograms of walls and whole cells. The mass pyrograms of magnesium-limited cells showed the characteristic peaks for protein, peptidoglycan and teichoic acid. Phosphate-limited cells showed peaks characteristic of teichuronic acid instead of teichoic acid.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-122-1-119
1981-01-01
2021-07-23
Loading full text...

Full text loading...

/deliver/fulltext/micro/122/1/mic-122-1-119.html?itemId=/content/journal/micro/10.1099/00221287-122-1-119&mimeType=html&fmt=ahah

References

  1. Boer W.R.de. 1979 Cell wall polymers of Bacillus subtilis. Structure and metabolism Thesis University of Amsterdam, The Netherlands:
    [Google Scholar]
  2. Boer W.R.DE, Kruyssen F.J., Wouters J.T.M., Kruk C. 1976; The structure of teichoic acid from Bacillus subtilis var. niger WM as determined by 13C nuclear-magnetic-resonance spectroscopy. European Journal of Biochemistry 62:1–6
    [Google Scholar]
  3. Boer W.R.de, Anderson A.J., Archibald A.R. 1978; Further evidence for the structure of the teichoic acids from Bacillus stearothermophilus B65 and Bacillus subtilis. European Journal of Biochemistry 85:433–436
    [Google Scholar]
  4. Budzikiewicz H., Djerassi C., Williams D.H. 1964 Interpretation of Mass Spectra of Organic Compounds San Francisco: Holden-Day;
    [Google Scholar]
  5. Ellwood D.C. 1970; The wall content and composition of Bacillus subtilis var. niger grown in a chemostat. Biochemical Journal 118:367–373
    [Google Scholar]
  6. Eshuis W., Kistemaker P.G., Meuzelaar H.L.C. 1977; Some numerical aspects of reproducibility and specificity. In Analytical Pyrolysis pp. 151–166 Jones C.E.R., Cramers C.A. Edited by Amsterdam: Elsevier;
    [Google Scholar]
  7. Evans C.G.T., Herbert D., Tempest D.W. 1970; The continuous cultivation of microorganisms. 2. Construction of a chemostat. Methods in Microbiology 2:277–327
    [Google Scholar]
  8. Haverkamp J., Meuzelaar H.L.C., Beuvery E.C., Boonekamp P., Tiesjema R.H. 1980a; Characterization of Neisseria meningitidis capsular polysaccharides containing sialic acids by pyrolysis mass spectrometry. Analytical Biochemistry 104:407–418
    [Google Scholar]
  9. Haverkamp J., Guinee P.A.M., Eshuis W., Boerboom H.A.J. 1980b; Pyrolysis mass spectrometry as a rapid screening method of biological materials. In Advances in Mass Spectrometry 8 pp. 12–18 Daly N.R. Edited by London: Heyden;
    [Google Scholar]
  10. Heyns K., Klier M. 1968; Bräunungsreaktionen und Fragmentierungen von Kohlenhydraten. IV.Vergleich der flüchtigen Abbauprodukte bei der Pyrolyse von mono-, oligo- und polysacchariden. Carbohydrate Research 6:436–448
    [Google Scholar]
  11. Irwin W.J. 1979a; Analytical pyrolysis - an overview. Journal of Analytical and Applied Pyrolysis 1:3–25
    [Google Scholar]
  12. Irwin W.J. 1979b; Analytical pyrolysis - an overview. Applications. Journal of Analytical and Applied Pyrolysis 1:89–122
    [Google Scholar]
  13. Kruyssen F.J. 1979 The cell wall of Bacillus subtilis. Regulation of synthesis of anionic polymers Thesis University of Amsterdam, The Netherlands:
    [Google Scholar]
  14. Louter G.J., Stalmeier P.F.M., Boerboom A.J.H., Haverkamp J., Kistemaker J. 1980; High sensitivity in CID mass spectrometry, structure analysis of pyrolysis products. Zeitschrift für Naturforschung 35C:6–11
    [Google Scholar]
  15. Meuzelaar H.L.C., Kistemaker P.G. 1973; A technique for fast and reproducible fingerprinting of bacteria by pyrolysis mass spectrometry. Analytical Chemistry 45:587–590
    [Google Scholar]
  16. Meuzelaar H.L.C., Kistemaker P.G., Posthumus M.A. 1974; Recent advances in pyrolysis mass spectrometry of complex biological materials. Biomedical Mass Spectrometry 1:312–319
    [Google Scholar]
  17. Meuzelaar H.L.C., Kistemaker P.G., Tom A. 1975a; Rapid and automated identification of microorganisms by Curie-point pyrolysis techniques. I. Differentiation of bacterial strains by fully automated Curie-point pyrolysis gas-liquid chromatography. In New Approaches to the Identification of Microorganisms pp. 165–178 Hedén C., Illéni T. New York: Wiley;
    [Google Scholar]
  18. Meuzelaar H.L.C., Kistemaker P.G., Tom A. 1975b; Rapid and automated identification of microorganisms by Curie-point pyrolysis techniques. II. Fast identification of microbiological samples by Curie-point pyrolysis mass spectrometry. In New Approaches to the Identification of Microorganisms pp. 179–191 Heden C., Illeni T. Edited by New York: Wiley;
    [Google Scholar]
  19. Meuzelaar H.L.C., Kistemaker P.G., Eshuis W., Boerboom H.A.J. 1977; Automated pyrolysis mass spectrometry; application to the differentiation of microorganisms. . In Advances in Mass Spectrometry 7B pp. 1452–1456 Daly N.R. Edited by London: Heyden;
    [Google Scholar]
  20. Meuzelaar H.L.C., Haverkamp J., Hileman F.D. 1981 Curie-point Pyrolysis Mass Spectrometry of Recent and Fossil Biomaterials. Compendium and Atlas in the Press Amsterdam: Elsevier;
    [Google Scholar]
  21. Posthumus M.A., Nibbering N.M.M., Boerboom A.J.H., schulten H.R. 1974a; Pyrolysis mass spectrometric studies on nucleic acids. Biomedical Mass Spectrometry 1:352–357
    [Google Scholar]
  22. Posthumus M.A., Boerboom A.J.H., Meuzelaar H.L.C. 1974b; Analysis of biopolymers by Curie-point pyrolysis in direct com-bination with low voltage electron impact ionization mass spectrometry. . In Advances in Mass Spectrometry 6 pp. 397–402 West A.R. Edited by Barking: Applied science Publishers;
    [Google Scholar]
  23. Shafizadeh F. 1975; Industrial pyrolysis of cel- lulosic materials. In Applied Polymer Symposium 28 pp. 153–174 Timell T.E. Edited by New York: Wiley.;
    [Google Scholar]
  24. Shafizadeh F., Lai Y.F. 1972; Thermal degradation of 1,6-anhydro-β-d-glucopyranose. Journal of Organic Chemistry 37:278–284
    [Google Scholar]
  25. Schleifer K.H., Kandler O. 1972; Pep- tidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriological Reviews 36:407–477
    [Google Scholar]
  26. Schulten H.R., Görtz W. 1978; Curie-point pyrolysis and field ionization mass spectrometry of polysaccharides. Analytical Chemistry 50:428–433
    [Google Scholar]
  27. Schulten H.R., Beckey H.D., Meuzelaar H. L.C., Boerboom A.J.H. 1973; High resolution field ionization mass spectrometry of bacterial pyrolysis products. Analytical Chemistry 45:191–195
    [Google Scholar]
  28. Simmonds P.G. 1970; Whole microorganisms studied by pyrolysis-gas chromatography-mass spectrometry: significance for extraterrestrial life detection experiments. Applied Microbiology 20:567–572
    [Google Scholar]
  29. Simmonds P.G., Medley E.E., Retcliff M.A., Shulman G.P. 1972; Thermal decomposition of aliphatic monoamino monocarboxylic acids. Analytical Chemistry 44:2060–2066
    [Google Scholar]
  30. Stenhagen E., Abrahamsson S., Mclafferty F.W. 1974 Registry of Mass Spectral Data 1 New York: Wiley;
    [Google Scholar]
  31. Tempest D.W., Neussel O. 1978; Eco-physical aspects of microbial growth in aerobic nutrient- limited environments. . In Advances in Microbial Ecology 2 pp. 105–153 Alexander M. Edited by New York & London: Plenum Press;
    [Google Scholar]
  32. Weyman A.C.M. 1977; The application of Curie-point pyrolysis mass spectrometry in fungal taxonomy. In Analytical Pyrolysis pp. 225–233 Jones C.E.R., Cramers C.A. Edited by Amsterdam: Elsevier;
    [Google Scholar]
  33. Windig W., Kistemaker P.G., Haverkamp J., Meuzelaar H.L.C. 1980; Factor analysis of the influence of changes in experimental conditions in pyrolysis mass spectrometry. Journal of Analytical and Applied Pyrolysis 2:7–18
    [Google Scholar]
  34. Wright J., Heckels J.E. 1975; The teichuronic acid of cell walls of Bacillus subtilis W23 grown in a chemostat under phosphate limitation. Biochemical Journal 147:187–189
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-122-1-119
Loading
/content/journal/micro/10.1099/00221287-122-1-119
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error