1887

Abstract

The relationships among 93 strains of were investigated by (1) a numerical taxonomic analysis on the results of 150 phenotypic tests, (2) DNA hybridization studies using 16 reference strains, (3) quantitative microcomplement fixation studies using six reference strains with antibodies directed against the protein azurin. In general, the strains fell into distinct clusters. Assignment to these clusters on the basis of azurin immunological similarity showed 98% agreement with assignment based on DNA homology, suggesting that many genes will follow the same pattern. Of the strains that clustered on the basis of genotype (DNA, azurin) 88% also clustered on the basis of phenotype. The occasional non-congruency observed between the genotypic and phenotypic data may be due to the variable rates of phenotypic evolution. These results provide a perspective on the roles of horizontal and vertical transfer of genes in the evolution of this bacterial group.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-120-2-485
1980-10-01
2024-04-26
Loading full text...

Full text loading...

/deliver/fulltext/micro/120/2/mic-120-2-485.html?itemId=/content/journal/micro/10.1099/00221287-120-2-485&mimeType=html&fmt=ahah

References

  1. Ambler R. P. 1971; Sequence data acquisition for the study of phylogeny. In Recent Developments in the Chemical Study of Protein Structures pp. 289–305 Previero A., Pechere J.-F., Coletti-Previero M.-A. Edited by Paris: INSERM;
    [Google Scholar]
  2. Ambler R. P. 1974; The evolutionary stability of cytochrome c-551 in Pseudomonas aeruginosa and Pseudomonas fluorescens biotype C. Biochemical Journal 137:3–14
    [Google Scholar]
  3. Ambler R. P., Daniel M., Hermoso J., Meyer T. E., Bartsch R. G., Kamen M. D. 1979a; Cytochrome c2 sequence variation among the recognized species of purple nonsulphur photosynthetic bacteria. Nature; London: 278659–660
    [Google Scholar]
  4. Ambler R. P., Meyer T. E., Kamen M. D. 1979b; Anomalies in amino acid sequences of small cytochromes c and cytochromes c’ from two species of purple photosynthetic bacteria. Nature; London: 278661–662
    [Google Scholar]
  5. Anderson E. S. 1968; The ecology of transferable drug resistance in the enterobacteria. Annual Review of Microbiology 22:131–180
    [Google Scholar]
  6. Ballard R. W., Doudoroff M., Stanier R. Y., Mandel M. 1968; Taxonomy of the aerobic pseudomonads: Pseudomonas diminuta and P. vesiculare. . Journal of General Microbiology 53:349–361
    [Google Scholar]
  7. Ballard R. W., Palleroni N. J., Doudoroff M., Stanier R. Y., Mandel M. 1970; Taxonomy of the aerobic pseudomonads: Pseudomonas cepacia, P. marginata, P. alliicola and P. caryo- phylli. . Journal of General Microbiology 60:199–214
    [Google Scholar]
  8. Baumann L., Baumann P. 1976; Study of relationship among marine and terrestrial enterobacteria by means of in vitro DNA/ribosomal RNA hybridization. Microbios Letters 3:11–20
    [Google Scholar]
  9. Baumann L., Baumann P. 1978; Studies of relationship among terrestrial Pseudomonas, Alcali- genes, and enterobacteria by an immunological comparison of glutamine synthetase. Archives of Microbiology 119:25–30
    [Google Scholar]
  10. Brenner D. J. 1973; Deoxyribonucleic acid reassociation in the taxonomy of enteric bacteria. International Journal of Systematic Bacteriology 23:298–307
    [Google Scholar]
  11. Chakrabarty A. M. 1972; Genetic basis of the biodegradation of salicylate in Pseudomonas. . Journal of Bacteriology 112:815–823
    [Google Scholar]
  12. Chakrabarty A. M., Chou G., Gunsalus I. C. 1973; Genetic regulation of octane dissimilation plasmid in Pseudomonas. . Proceedings of the National Academy of Sciences of the United States of America 70:1137–1140
    [Google Scholar]
  13. Champion A. B., Prager E. M., Wachter D., Wilson A. C. 1974; Microcomplement fixation. In Biochemical and Immunological Taxonomy of Animals pp. 397–416 Wright C. A. Edited by London & New York: Academic Press;
    [Google Scholar]
  14. Champion A. B., Soderberg K. L., Wilson A. C., Ambler R. P. 1975; Immunological comparison of azurins of known amino acid sequence. Journal of Molecular Evolution 5:291–305
    [Google Scholar]
  15. Clarke P. H. 1974; The evolution of enzymes for the utilization of novel substrates. Symposia of the Society for General Microbiology 24:183–217
    [Google Scholar]
  16. Cocks G. T., Wilson A. C. 1972; Enzyme evolution in the Enterobacteriaceae. . Journal of Bacteriology 110:793–802
    [Google Scholar]
  17. Colwell R. R., Johnson R., Wan L., Lovelace T. E., Brenner D. J. 1974; Numerical taxonomy and deoxyribonucleic acid reassociation in the taxonomy of some Gram-negative fermentative bacteria. International Journal of Systematic Bacteriology 24:422–433
    [Google Scholar]
  18. Davis D. H., Stanier R. Y., Doudoroff M., Mandel M. 1970; Taxonomic studies on some Gram-negative, polarly flagellated ‘hydrogen bacteria’ and related species. Archiv für Mikro- biologie 70:1–13
    [Google Scholar]
  19. Dayhoff M. O., Park C. M., Mclaughlin P. J. 1972; Building a phylogenetic tree: cytochrome c. . In Atlas of Protein Sequence and Structure 5 pp. 7–16 Dayhoff M. O. Edited by Washington, D.C.: National BioMedical Research Foundation;
    [Google Scholar]
  20. Dunn N. W., Gunsalus I. C. 1973; Transmissible plasmid coding early enzymes of naphthalene oxidation in Pseudomonas putida. . Journal of Bacteriology 114:974–979
    [Google Scholar]
  21. Fitch W. M., Margoliash E. 1967; Construction of phylogenetic trees. Science 155:279–284
    [Google Scholar]
  22. Gasser F., Hontebeyrie M. 1977; Immunological relationships of glucose-6-phosphate dehydrogenase of Leuconostoc mesenteroides NCDO 768 (= ATCC 12291). International Journal of Systematic Bacteriology 27:6–8
    [Google Scholar]
  23. Hegeman G. D., Rosenberg S. L. 1970; The evolution of bacterial enzyme systems. Annual Review of Microbiology 24:429–462
    [Google Scholar]
  24. Hontebeyrie M., Gasser F. 1975; Comparative immunological relationships of two distinct sets of isofunctional dehydrogenases in the genus Leuconostoc. . International Journal of Systematic Bacteriology 25:1–6
    [Google Scholar]
  25. Hontebeyrie M., Gasser F. 1977; Deoxyribonucleic acid homologies in the genus Leuconostoc. . International Journal of Systematic Bacteriology 27:9–14
    [Google Scholar]
  26. Hori H., Osawa S. 1979; Evolutionary change in 5S RNA secondary structure and a phylogenetic tree of 54 5S RNA species. Proceedings of the National Academy of Sciences of the United States of America 76:381–385
    [Google Scholar]
  27. Jessen O. 1965 Pseudomonas aeruginosa and Other Green Fluorescent Pseudomonads. A Taxonomic Study. Copenhagen: Munksgaard;
    [Google Scholar]
  28. Jones D., Sneath P. H. A. 1970; Genetic transfer and bacterial taxonomy. Bacteriological Reviews 34:40–81
    [Google Scholar]
  29. Kemp M. B., Hegeman G. D. 1968; Genetic control of the β-ketoadipate pathway in Pseudomonas aeruginosa. . Journal of Bacteriology 96:1488–1499
    [Google Scholar]
  30. Lacey R. W. 1975; Antibiotic resistance plasmids of Staphylococcus aureus and their clinical importance. Bacteriological Reviews 39:1–32
    [Google Scholar]
  31. Lee F., Bertrand K., Bennett G., Yanofsky C. 1978; Comparison of the nucleotide sequences of the initial transcribed regions of the tryptophan operons of Escherichia coli and Salmonella typhimurium. . Journal of Molecular Biology 121:193–217
    [Google Scholar]
  32. Leidigh B. J., Wheelis M. L. 1973; The clustering on the Pseudomonas putida chromosome of genes specifying dissimilatory functions. Journal of Molecular Evolution 2:235–242
    [Google Scholar]
  33. Li S.-L., Hoch S. O. 1974; Amino-terminal sequence of the tryptophan synthetase alpha chain of Bacillus subtilis. . Journal of Bacteriology 118:187–191
    [Google Scholar]
  34. Li S.-L., Hanlon J., Yanofsky C. 1974; Separation of anthranilate synthetase components I and II of Escherichia coli, Salmonella typhimurium, and Serratia marcescens and determination of their amino-terminal sequences by automatic Edman degradation. Biochemistry 13:1736–1744
    [Google Scholar]
  35. Lin E. C. C., Hacking A. J., Aguilar J. 1976; Experimental models of acquisitive evolution. Bioscience 26:548–555
    [Google Scholar]
  36. London J., Chace N. M. 1976; Aldolases of the lactic acid bacteria. Demonstration of immunological relationships among eight genera of Gram-positive bacteria using an anti-pediococcal aldolase serum. Archives of Microbiology 110:121–128
    [Google Scholar]
  37. Miozzari G. F., Yanofsky C. 1978a; Naturally occurring promoter down mutation: nucleotide sequence of the trp promoter/operator/ leader region of Shigella dysenteriae 16. Proceedings of the National Academy of Sciences of the United States of America 75:5580–5584
    [Google Scholar]
  38. Miozzari G. F., Yanofsky C. 1978b; The regulatory region of the trp operon of Serratia marcescens. . Nature; London: 276684–689
    [Google Scholar]
  39. Palleroni N. J., Doudoroff M. 1972; Some properties and taxonomic subdivisions of the genus Pseudomonas. . Annual Review of Phytopathology 10:73–100
    [Google Scholar]
  40. Palleroni N. J., Doudoroff M., Stanier R. Y., SolÁnes R. E., Mandel M. 1970; Taxonomy of the aerobic pseudomonads: the properties of the Pseudomonas stutzeri group. Journal of General Microbiology 60:215–231
    [Google Scholar]
  41. Palleroni N. J., Ballard R. W., Ralston E., Doudoroff M. 1972; Deoxyribonucleic acid homologies among some Pseudomonas species. Journal of Bacteriology 110:1–11
    [Google Scholar]
  42. Palleroni N. J., Kunisawa R., Contopoulou R., Doudoroff M. 1973; Nucleic acid homologies in the genus Pseudomonas. . International Journal of Systematic Bacteriology 23:333–339
    [Google Scholar]
  43. Prager E. M., Wilson A. C. 1978; Construction of phylogenetic trees for proteins and nucleic acids: empirical evaluation of alternative matrix methods. Journal of Molecular Evolution 11:129–142
    [Google Scholar]
  44. Ralston E., Palleroni N. J., Doudoroff M. 1972; Deoxyribonucleic acid homologies of some so-called ‘Hydrogenomonas’ species. Journal of Bacteriology 109:465–466
    [Google Scholar]
  45. Reanney D. 1976; Extrachromosomal elements as possible agents of adaptation and development. Bacteriological Reviews 40:552–590
    [Google Scholar]
  46. Reichelt J. L., Baumann P., Baumann L. 1976; Study of genetic relationships among marine species of the genera Beneckea and Photobacterium by means of in vitro DNA/DNA hybridization. Archives of Microbiology 110:101–120
    [Google Scholar]
  47. Rheinwald J. G., Chakrabarty A. M., Gun-Salus I. C. 1973; A transmissible plasmid controlling camphor oxidation in Pseudomonas putida. . Proceedings of the National Academy of Sciences of the United States of America 70:885–889
    [Google Scholar]
  48. Richmond M. H. 1973; Resistance factors and their ecological importance to bacteria and to man. Progress in Nucleic Acid Research and Molecular Biology 13:191–248
    [Google Scholar]
  49. Riley M., Anilionis A. 1978; Evolution of the bacterial genome. Annual Review of Microbiology 32:519–560
    [Google Scholar]
  50. Rosenberg S. L., Hegeman G. D. 1969; Clustering of functionally related genes in Pseudomonas aeruginosa. . Journal of Bacteriology 99:353–355
    [Google Scholar]
  51. Sanderson K. E. 1976; Genetic relatedness in the family Enterobacteriaceae. . Annual Review of Microbiology 30:327–349
    [Google Scholar]
  52. Sneath P. H. A. 1974; Phylogeny of microorganisms. Symposia of the Society for General Microbiology 24:1–39
    [Google Scholar]
  53. Sneath P. H. A., Sokal R. R. 1973 Numerical Taxonomy. San Francisco: W. H. Freeman & Co.;
    [Google Scholar]
  54. Stanier R. Y., Palleroni N. J., Doudoroff M. 1966; The aerobic pseudomonads: a taxonomic study. Journal ofGeneral Microbiology 43:159–271
    [Google Scholar]
  55. Stanier R. Y., Wachter D., Gasser C., Wilson A. C. 1970; Comparative immunological studies of two Pseudomonas enzymes. Journal of Bacteriology 102:351–362
    [Google Scholar]
  56. Stanisich V. A., Richmond M. H. 1975; Gene transfer in the genus Pseudomonas. . In Genetics and Biochemistry of Pseudomonas pp. 163–190 Clarke P. H., Richmond M. H. London: John Wiley;
    [Google Scholar]
  57. Stollar D., Levine L. 1963; Two-dimensional immunodiffusion. Methods in Enzymology 6:848–854
    [Google Scholar]
  58. Tafler S. W., Setlow P., Levine L. 1973; Serological relatedness of bacterial deoxyribonucleic acid polymerases. Journal of Bacteriology 113:18–23
    [Google Scholar]
  59. De Torrontegui G., Diaz R., Wheelis M. L., Canovas J. L. 1976; Supra-operonic clustering of genes specifying glucose dissimilation in Pseudomonas putida. . Molecular and General Genetics 144:307–311
    [Google Scholar]
  60. Tronick S. R., Ciardi J. E., Stadtman E. R. 1973; Comparative biochemical and immunological studies of bacterial glutamine synthetases. Journal of Bacteriology 115:858–868
    [Google Scholar]
  61. Watanabe T. 1963; Infective heredity of multiple drug resistance in bacteria. Bacteriological Reviews 27:87–115
    [Google Scholar]
  62. Wheelis M. L., Stanier R. Y. 1970; The genetic control of dissimilatory pathways in Pseudomonas putida. . Genetics 66:245–266
    [Google Scholar]
  63. Williams P. A., Murray K. 1974; Metabolism of benzoate and the methylbenzoates by Pseudomonas putida (arvitla) mt-2: evidence for the existence of a TOL plasmid. Journal of Bacteriology 120:416–423
    [Google Scholar]
  64. Wilson A. C. 1975; Evolutionary importance of gene regulation. Stadler Genetics Symposium 7:117–133
    [Google Scholar]
  65. Wilson A. C., Carlson S. S., White T. J. 1977; Biochemical evolution. Annual Review of Biochemistry 46:573–639
    [Google Scholar]
  66. Worsey M. J., Williams P. A. 1975; Metabolism of toluene and the xylenes by Pseudomonas putida (arvil/a) mt-2: evidence for a new function of the TOL plasmid. Journal of Bacteriology 124:7–13
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-120-2-485
Loading
/content/journal/micro/10.1099/00221287-120-2-485
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error