1887

Abstract

Citrate was fermented by if a second substrate, such as glucose, lactose or lactate, was available to the organism. The function of the second substrate was to provide reducing power for the formation of succinate from oxaloacetate. Citrate lyase, malate dehydrogenase, fumarase and fumarate reductase were present in cell extracts of at high activity. Oxaloacetate decarboxylase could not be detected, and it is assumed that this lack is the reason for the inability of to grow anaerobically with citrate as the only carbon and energy source.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-119-1-63
1980-07-01
2024-12-12
Loading full text...

Full text loading...

/deliver/fulltext/micro/119/1/mic-119-1-63.html?itemId=/content/journal/micro/10.1099/00221287-119-1-63&mimeType=html&fmt=ahah

References

  1. Amaransingham C. R., Davis B. D. 1965; Regulation of α-ketoglutarate dehydrogenase formation in E. coli. . Journal of Biological Chemistry 240:3664–3668
    [Google Scholar]
  2. Beisenherz G., Boltze H. J., Bucher Th., Czok R., Garbade K. H., Meyer-Arendt E., Pfleiderer G. 1953; Diphosphofructose-Aldolase, Phosphoglyceraldehyd-Dehydrogenase, Mil- chsäure-Dehydrogena se, Glycerophosphat-Dehy- drogenase und Pyruvat-Kinase aus Kaninchen- muskulatur in einem Arbeitsgang.. Zeitschrift für Naturforschung 8b:555–577
    [Google Scholar]
  3. Bergmeyer H. U. 1974 Methoden der Enzyma-tischen Analyse, 3rd. pp. 1607–1611 Weinheim:: Verlag Chemie.;
    [Google Scholar]
  4. Bernhard T. 1975 Verhalten der Oxalacetat- Decarboxylase von Rhodopseudomonas gelatinosabei phototrophem Wachstum auf Citrat. Diploma thesis: University of Göttingen, F.R.G.;
    [Google Scholar]
  5. Bernhard T., Gottschalk G. 1978; Cell yield of Escherichia coli during anaerobic growth on fumarate and molecular hydrogen.. Archives of Microbiology 116:235–238
    [Google Scholar]
  6. Beuscher N., Mayer F., Gottschalk G. 1974; Citrate lyase from Rhodopseudomonas gelatinosa: purification, electron microscopy and subunit structure.. Archives of Microbiology 100:307–328
    [Google Scholar]
  7. Boehringer Mannheim GmbH 1972 Enzymatische Analysen für die Lebensmittelchemie pp. 12–1556–5972–75
    [Google Scholar]
  8. Dagley S. 1954; Dissimilation of citric acid by Aerobacter aerogenes and Escherichia coli. . Journal of General Microbiology 11:218–227
    [Google Scholar]
  9. Dixon G. H., Kornberg H. L. 1959; Assay methods for enzymes of the glyoxylate cycle.. Biochemical Journal 72:3P
    [Google Scholar]
  10. Dorn M., Andreesen J. R., Gottschalk G. 1978a; Fumarate reductase of Clostridium for- micoaceticum. A peripheral membrane protein.. Archives of Microbiology 119:7–11
    [Google Scholar]
  11. Dorn M., Andreesen J. R., Gottschalk G. 1978b; Fermentation of fumarate and l-malate by Clostridium formicoaceticum. . Journal of Bacteriology 133:26–32
    [Google Scholar]
  12. Giffhorn F., Gottschalk G. 1975; Effect of growth conditions on the activation and inactivation of citrate lyase of Rhodopseudomonas gelatinosa. . Journal of Bacteriology 124:1046–1051
    [Google Scholar]
  13. Haddock B. A., Kendall-Tobias M. W. 1975; Functional anaerobic electron transport linked to the reduction of nitrate and fumarate in membranes from E. coli as demonstrated by quenching of atebrin fluorescence.. Biochemical Journal 152:655–659
    [Google Scholar]
  14. Herbert D. 1955; Oxalacetic decarboxylase of Micrococcus lysodeikticus. . Methods in Enzymology 1:735–757
    [Google Scholar]
  15. Hiremath S. T., Paranjpe S., Sivaraman C. 1976; Purification and properties of citrate lyase from Streptococcus faecalis. . Biochemical and Biophysical Research Communications 72:1122–1128
    [Google Scholar]
  16. Hirsch C. A. M., Rasminsky M., Davis B. D., Lin E. C. C. 1963; A fumarate reductase in E. coli distinct from succinate dehydrogenase.. Journal of Biological Chemistry 238:3770–3774
    [Google Scholar]
  17. Hsu R. Y., Lardy H. A. 1969; Malic enzyme.. Methods in Enzymology 13:230–235
    [Google Scholar]
  18. Hungate R. E. 1969; A roll tube method for cultivation of strict anaerobes.. Methods in Microbiology 3B:117–132
    [Google Scholar]
  19. Iwakura M., Hattori J., Arita Y., Tokushige M., Katsuki H. 1979; Studies on regulatory functions of malic enzymes. VI. Purification and molecular properties of NADP-linked malic enzyme from Escherichia coli W.. Journal of Biochemistry 85:1355–1365
    [Google Scholar]
  20. Johnson C. L., Cha Y.-A., Stern J. R. 1975; Citrate uptake in membrane vesicles of Klebsiella aerogenes. . Journal of Bacteriology 121:682–687
    [Google Scholar]
  21. Koser S. A. 1923; Utilization of the salts by the colon-aerogenes group.. Journal of Bacteriology 8:493–520
    [Google Scholar]
  22. Koser S. A. 1924; Correlation of citrate utilization by members of the colon-aerogenes group with other differential characteristics and with habitat.. Journal of Bacteriology 9:59–77
    [Google Scholar]
  23. Krøger A. 1974; Electron-transport phosphorylation coupled to fumarate reduction in anaerobically grovm Proteusrettgeri. . Biochimica et biophysica acta 347:273–289
    [Google Scholar]
  24. Krøger A. 1976; Phosphorylative electron transport with fumarate and nitrate as terminal hydrogen acceptors.. Symposia of the. Society for General Microbiology 27:61–93
    [Google Scholar]
  25. Kroøger A., Innerhofer A. 1976; The function of menaquinone, covalently bound FAD and iron-sulfur protein in the electron transport from formate to fumarate of Vibrio succinogenes. . European Journal of Biochemistry 69:487–495
    [Google Scholar]
  26. Kulla H. 1976 Regulation der Citrat-Lyase in Enterobacter aerogenes und Escherichia coli. Ph.D. thesis; University of Gottingen, F.R.G.:
    [Google Scholar]
  27. Kümmel A., Behrens G., Gottschalk G. 1975; Citrate lyase from Streptococcus diacetilactis.Association with its acetylating enzyme.. Archives of Microbiology 102:111–116
    [Google Scholar]
  28. Lang E., Lang H. 1972; Spezifische Farbreak- tion zum direkten Nachweis der Ameisensäure.. Zeitschrift für analytische Chemie 260:8–10
    [Google Scholar]
  29. Lara F. J. S., Stokes J. L. 1952; Oxidation of citrate by Escherichia coli. . Journal of Bacteriology 63:415–420
    [Google Scholar]
  30. Macy J., Kulla H., Gottschalk G. 1976; H2-dependent anaerobic growth of Escherichia coli on l-malate: succinate formation.. Journal of Bacteriology 125:423–428
    [Google Scholar]
  31. Miki K., Lin E. C. C. 1975; Anaerobic energy- yielding reaction associated with transhydrogenation from glycerol-3-phosphate to fumarate by an E. coli system.. Journal of Bacteriology 124:1282–1287
    [Google Scholar]
  32. Murait T., Tokushige M., Nagai J., Katsuki H. 1972; Studies on regulatory functions of malic enzyme. 1. Metabolic functions of NAD and NADP-linked malic enzymes in Escherichia coli. . Journal of Biochemistry 71:1015–1028
    [Google Scholar]
  33. O’Brien R. W., Stern J. R. 1969; Requirement for sodium in the anaerobic growth of Aerobacter aerogenes on citrate.. Journal of Bacteriology 98:388–393
    [Google Scholar]
  34. Parr L. W., Simpson W. F. 1940; Coliform ‘mutants’ with respect to the utilization of citrate.. Journal of Bacteriology 40:467–482
    [Google Scholar]
  35. Pfennig N., Lippert D. 1966; Über das Vitamin B12-Bedürfnis phototropher Schwefelbak- terien.. Archiv für Mikrobiologie 55:245–256
    [Google Scholar]
  36. Ruchhoft C. C., Kallas J. G., Chinn B., Coulter E. W. 1931; Coli-aerogenes differentiation in water analysis. II. The biochemical differential tests and their interpretation.. Journal of Bacteriology 22:125–181
    [Google Scholar]
  37. Sanwal B. D., Smando R. 1969; Malic enzyme of Escherichia coli. Diversity of the effectors controlling enzyme activity.. Journal of Biological Chemistry 244:1817–1823
    [Google Scholar]
  38. Singh M., Srere P. A. 1975; Purification and properties of citrate lyase from Streptococcus diacetilactis. . Journal of Biological Chemistry 250:5818–5825
    [Google Scholar]
  39. Smith H. W., Parsell Z., Green P. 1978; Thermosensitive HI plasmids determining citrate utilization.. Journal of General Microbiology 109:305–311
    [Google Scholar]
  40. Stern J. R. 1967; Oxalacetate decarboxylase of Aerobacter aerogenes. 1. Inhibition by avidin and requirement for sodium ion.. Biochemistry 6:3545–3551
    [Google Scholar]
  41. Vaughn R. H., Osborne J. T., Wedding G. J., Tabachnik J., Beisel C. G., Braxton T. 1950; The utilization of citrate by Escherichia coli. . Journal of Bacteriology 60:119–127
    [Google Scholar]
  42. Walther R., Hippe H., Gottschalk G. 1977; Citrate, a specific substrate for the isolation of Clostridium sphenoides. . Applied and Environmental Microbiology 33:955–962
    [Google Scholar]
  43. Wheat R. W., Ajl S. J. 1955; Citritase, the citrate splitting enzyme from Escherichia coli. . Journal of Biological Chemistry 217:897–920
    [Google Scholar]
  44. Wilkerson L. S., Eagon R. G. 1972; Transport of citric acid by Aerobacter aerogenes. . Archives of Biochemistry and Biophysics 149:209–221
    [Google Scholar]
  45. Williamson J. R., Corkey B. E. 1969; Fluori-metric assay using enzymatic methods.. Methods in Enzymology 13:434–513
    [Google Scholar]
  46. Yamaguchi M., Saito R., Tokushige M., Katsuki H. 1973; Alteration of NAD-linked malic enzyme-catalyzed reactions by sulfhydryl group modification.. Biochemical and Biophysical Research Communications 55:1285–1290
    [Google Scholar]
  47. Yamamoto I., Ishimoto M. 1977; Anaerobic growth of E. coli on formate by reduction of nitrate, fumarate and trimethylamine N-oxide.. Zeitschrift für allgemeine Mikrobiologie 17:235–242
    [Google Scholar]
/content/journal/micro/10.1099/00221287-119-1-63
Loading
/content/journal/micro/10.1099/00221287-119-1-63
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error