1887

Abstract

SUMMARY: The free-swimming ciliate avoids warm regions. We have developed a quantitative assay of thermal avoidance, based on the interference between thermal avoidance and the normal tendency to swim upward (negative geotaxis). swimming in a Tris/Ca solution avoided a region warmer than about 40°C. Several factors influenced the strength of the response, including the concentrations of monovalent cations and Ca, the temperature of the test region, and the temperature at which the animals had been cultured. At 1 m-Ca, increasing Na concentration enhanced avoidance of a 40°C region, and at a constant Na concentration (0·5 m), avoidance improved with decreased Ca. When the ratio [Na]/[Ca] was held constant, varying Na and Ca concentrations did not affect thermal avoidance. Other monovalent cations (Cs, Li, Rb) and hydroxylamine also enhanced thermal avoidance, and K was somewhat less effective than these. The strength of the avoidance response increased with increasing test temperature in the range of 37 to 42°C for cells grown at 28°C. Cells grown at 15°C had a lower threshold for thermal avoidance, and those grown at 35°C showed no avoidance at 40°C and only poor avoidance at higher temperatures. Cells cultured at 15 or 35°C and then shifted to 28°C acquired the thermal behaviour typical of cells cultured at 28°C. Behavioural mutants with defective Ca channels (Pawns) are incapable of reversing their swimming direction and showed little or no thermal avoidance. We suggest that thermal avoidance is triggered by thermotropic phase transitions in the lipids of the excitable membrane of .

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-112-2-337
1979-06-01
2021-05-14
Loading full text...

Full text loading...

/deliver/fulltext/micro/112/2/mic-112-2-337.html?itemId=/content/journal/micro/10.1099/00221287-112-2-337&mimeType=html&fmt=ahah

References

  1. Andrews D., Nelson D. L. 1979; Biochemical studies of the excitable membrane of Paramecium tetraurelia. II. Phospholipids of ciliary and other membranes. Biochimica et biophysica acta 550:174–187
    [Google Scholar]
  2. Browning J. L., Nelson D. L. 1976; Amphipathic amines affect membrane excitability in Paramecium: role for bilayer couple. Proceedings of the National Academy of Sciences of the United States of America 73:452–456
    [Google Scholar]
  3. Chang S. Y., Kung C. 1973; Temperature sensitive Pawns: conditional behavioral mutants of Paramecium aurelia . Science 180:1197–1199
    [Google Scholar]
  4. Chang S. Y., Van Houten J., Robels L. R., Lui S. S., Kung C. 1974; An extensive behavioral and genetic analysis of the Pawn mutants in Paramecium aurelia . Genetical Research 23:165–173
    [Google Scholar]
  5. Cossins A. R. 1977; Adaptation of biological membranes to temperature. The effect of temperature acclimation of goldfish upon the viscosity of synaptosomal membranes. Biochimica et biophysica acta 470:395–411
    [Google Scholar]
  6. Dunlap K. 1977; Localization of calcium channels in Paramecium caudatum . Journal of Physiology 271:119–133
    [Google Scholar]
  7. Eckert R. 1972; Bioelectric control of cilia. Science 176:473–481
    [Google Scholar]
  8. Farias R., Bloj B., Morero R. D., Sineriz F., Trucco R. E. 1975; Regulation of allosteric membrane-bound enzymes through changes in membrane lipid composition. Biochimica et biophysica acta 415:231–252
    [Google Scholar]
  9. Gill C. O., Suisted J. R. 1978; The effects of temperature and growth rate on the proportion of unsaturated fatty acids in bacterial lipids. Journal of General Microbiology 104:31–36
    [Google Scholar]
  10. Glaser O. 1924; Temperature and forward movement of Paramecium . Journal of General Physiology 7:177–188
    [Google Scholar]
  11. Grebecki A. 1965; Role of Ca2+ ions in the excitability of protozoan cell. Decalcification, recalcification and the ciliary reversal in Paramecium caudatum . Acta protozoologica 3:275–289
    [Google Scholar]
  12. Hayden D. A., Hendry B. M., Levinson S. R., Requena J. 1977; The molecular mechanisms of anaesthesia. Nature, London 268:356–358
    [Google Scholar]
  13. Hedgecock E. M., Russell R. L. 1975; Normal and mutant thermotaxis in the nematode Caenorhabditis elegans . Proceedings of the National Academy of Sciences of the United States of America 72:4061–4065
    [Google Scholar]
  14. Jahn T. L. 1962; The mechanism of ciliary movement. II. Ion antagonism and ciliary reversal. Journal of Cellular and Comparative Physiology 60:217–228
    [Google Scholar]
  15. Jennings H. S. 1904; Reaction to heat and cold in the ciliate infusoria. Contributions to the study of lower organisms. Carnegie Institute of Washington Publication no 16:5–28
    [Google Scholar]
  16. Jennings H. S. 1906 Behavior of Lower Organisms pp 51–58 Bloomington, Indiana: Indiana University Press;
    [Google Scholar]
  17. Kamada T., Kinosita H. 1940 Proceedings of the Imperial Academy of Japan 16:125
    [Google Scholar]
  18. Kitajima Y., Thompson G. 1977; Self-regulation of membrane fluidity. The effect of saturated normal and methoxy fatty acid supplementation on Tetrahymena membrane physical properties and lipid composition. Biochimica et biophysica acta 468:73–80
    [Google Scholar]
  19. Kung C. 1971; Genic mutants with altered system of excitation in Paramecium aurelia . Zeitschrift für vergleichende Physiologie 71:142–164
    [Google Scholar]
  20. Kung C., Eckert S. R. 1972; Genetic modification of electric properties in an excitable membrane. Proceedings of the National Academy of Sciences of the United States of America 69:93–97
    [Google Scholar]
  21. Kung C., Chang S. Y., Satow Y., Van Houten J., Hansma H. 1975; Genetic dissection of behavior in Paramecium . Science 188:898–904
    [Google Scholar]
  22. Lee A. G. 1976; Model for action of local anaesthetics. Nature, London 262:545–548
    [Google Scholar]
  23. Maeda K., Imae Y., Shoi J., -I. & Oosawa F. 1976; Effect of temperature on motility and chemotaxis of Escherichia coli . Journal of Bacteriology 127:1039–1046
    [Google Scholar]
  24. McElhaney R. N., Souza K. A. 1976; The relationship between environmental temperature, cell growth, and the fluidity and physical state of the membrane lipids in Bacillus stearothermophilus . Biochimica et biophysica acta 443:348–359
    [Google Scholar]
  25. Mendelssohn M. 1902a; L’interference de la thermotaxie avec d’autres tactismes et sur le mecanisme du mouvement thermotactique. Journal de physiologie et de pathologie générale 4:475–488
    [Google Scholar]
  26. Mendelssohn M. 1902b; Quelques considerations sur la nature et le role biologique de la thermotaxie. Journal de physiologie et de pathologie générale 4:489–496
    [Google Scholar]
  27. Mendelssohn M. 1902c; Recherches sur la thermotaxie des organismes unicellulaires. Journal de physiologie et de pathologie générale 4:393–409
    [Google Scholar]
  28. Naitoh Y. 1968; Ionic control of the reversal response of cilia in Paramecium caudatum. A calcium hypothesis. Journal of General Physiology 51:85–103
    [Google Scholar]
  29. Naitoh Y., Eckert R. 1968; Electrical properties of Paramecium caudatum: modification by bound and free cations. Zeitschrift für vergleichende Physiologie 61:427–452
    [Google Scholar]
  30. Naitoh Y., Yasumasu I. 1967; Binding of Ca ions by Paramecium caudatum . Journal of General Physiology 50:1303–1310
    [Google Scholar]
  31. Nakaoko Y., Oosawa F. 1977; Temperature-sensitive behavior of Paramecium caudatum . Journal of Protozoology 24:575–580
    [Google Scholar]
  32. Nandini-Kishore S., Kitajima Y., Thompson G. 1977; Membrane fluidizing effects of the general anaesthetic methoxyfluorane elicits an acclimation response in Tetrahymena . Biochimica et biophysica acta 471:157–161
    [Google Scholar]
  33. Nelson D. L., Kung C. 1978; Behavior of Paramecium – chemical, physiological and genetic studies. In Taxis and Behavior (Receptors and Recognition, series B, vol 5 pp 77–100 Edited by Hazelbauer G. L. London: Chapman & Co;
    [Google Scholar]
  34. Ogura A., Takahashi K. 1976; Artificial deciliation causes loss of Ca++-dependent responses in Paramecium . Nature, London 264:170–172
    [Google Scholar]
  35. Oosawa F. 1976; Thermotaxis of microorganisms. Journal of Biochemistry 79:49–50
    [Google Scholar]
  36. Overath P., Schairer H. U., Stoffel W. 1970; Correlation of in vivo and in vitro phase transitions of membrane lipids in Escherichia coli . Proceedings of the National Academy of Sciences of the United States of America 67:606–612
    [Google Scholar]
  37. Poff K. L., Skokut M. 1977; Thermotaxis by pseudoplasmodia of Dictyostelium discoideum . Proceedings of the National Academy of Sciences of the United States of America 74:2007–2010
    [Google Scholar]
  38. Rhoads D. E., Kaneshiro E. S. 1979; Characterization of phospholipids from Paramecium tetraurelia cells and cilia. Journal of Protozoology (in the Press)
    [Google Scholar]
  39. Schlieper C. 1937 Reizphysiologische Versuche an Paramecium caudatum. Film no. C214 Göttingen: Institut für den Wissenschaftlichen Film;
    [Google Scholar]
  40. Sinensky M. 1971; Temperature control of phospholipid biosynthesis in E . coli. Journal of Bacteriology 106:449–455
    [Google Scholar]
  41. Sinensky M. 1974; Homeoviscous adaptation – a homeostatic process that regulates the viscosity of membrane lipids in Escherichia coli . Proceedings of the National Academy of Sciences of the United States of America 71:522–525
    [Google Scholar]
  42. Sonneborn T. M. 1950; Methods in the general biology and genetics of Paramecium aurelia . Journal of Experimental Zoology 113:87–148
    [Google Scholar]
  43. Tawada K., Miyamoto H. 1973; Sensitivity of Paramecium thermotaxis to temperature change. Journal of Protozoology 20:289–292
    [Google Scholar]
  44. Tawada K., Oosawa F. 1972; Responses of Paramecium to temperature change. Journal of Protozoology 19:53–57
    [Google Scholar]
  45. Thilo L., Trauble H., Overath P. 1977; Mechanistic interpretation of the influence of lipid phase transitions on transport functions. Biochemistry 16:1283–1290
    [Google Scholar]
  46. Thompson, Jr G. A., Nozawa Y. 1977; Tetrahymena: a system for studying dynamic membrane alterations within the eukaryotic cell. Biochimica et biophysica acta 472:55–92
    [Google Scholar]
  47. Trauble H., Eibl H. 1974; Electrostatic effects on lipid phase transitions: membrane structure and ionic environment. Proceedings of the National Academy of Sciences of the United States of America 71:214–219
    [Google Scholar]
  48. Tso W., Mansour T. E. 1975; Thermotaxis in a slime mold, Physarum polycephalum . Journal of Behavioral Biology 14:499–504
    [Google Scholar]
  49. Van Houten J., Hansma H., Kung C. 1975; Two quantitative assays for chemotaxis in Paramecium . Journal of Comparative Physiology 104:211–223
    [Google Scholar]
  50. Wunderlich F., Speth V., Batz W., Kleinig H. 1973; Membranes of Tetrahymena. III. The effect of temperature on membrane core structures and fatty acid composition of Tetrahymena cells. Biochimica et biophysica acta 298:39–49
    [Google Scholar]
  51. Yapp W. B. 1941; Klinokinesis of Paramecium. Nature . London 148:754
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-112-2-337
Loading
/content/journal/micro/10.1099/00221287-112-2-337
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error