1887

Abstract

Summary: Production of enzymes degrading plant cell walls was studied using media containing cellobiose or ammonium ions (NH ) as limiting nutrients. Carboxymethylcellulase (CM-cellulase), xylanase and pectin lyase were primarily cell-associated during exponential growth in batch culture but accumulated in the supernatant during the stationary phase. Activities of CM-cellulase and xylanase were higher in cellobiose-limited than in NH -limited continuous cultures, were inversely related to the growth rate and became progressively more cell-associated as the growth rate increased. The proportion of fermentation products in cellobiose-limited continuous cultures was dependent on the growth rate and the calculated cell yields per mol ATP ( ) varied between 11·92 and 16·39. Glutamate dehydrogenase, an ammonia-assimilating enzyme, was most active in NH -limited continuous cultures. These results are discussed in relation to the growth and metabolism of .

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-110-1-29
1979-01-01
2021-05-07
Loading full text...

Full text loading...

/deliver/fulltext/micro/110/1/mic-110-1-29.html?itemId=/content/journal/micro/10.1099/00221287-110-1-29&mimeType=html&fmt=ahah

References

  1. Berg B. 1975; Cellulase location in Cellvibrio fulvus. Canadian Journal of Microbiology 21:51–57
    [Google Scholar]
  2. Berg B., van Hofsten B., Pettersson G. 1972; Growth and cellulase formation by Cellvibrio fulvus. Journal of Applied Bacteriology 35:201–214
    [Google Scholar]
  3. Bryant M. P. 1972; Commentary on the Hungate technique for culture of anaerobic bacteria.. American Journal of Clinical Nutrition 25:1324–1328
    [Google Scholar]
  4. Bryant M. P. 1973; Nutritional requirements of the predominant rumen cellulolytic bacteria.. Federation Proceedings 32:1809–1813
    [Google Scholar]
  5. Chang W. T. H., Thayer D. W. 1977; The cellulase system of a Cytophaga species.. Canadian Journal of Microbiology 23:1285–1292
    [Google Scholar]
  6. Decker K., Jungermann K., Thauer R. K. 1970; Energy production in anaerobic organisms. Angewandte Chemie, International Edition 9:138–158
    [Google Scholar]
  7. Dehority B. A. 1967; Rate of isolated hemicellulose degradation and utilization by pure cultures of rumen bacteria.. Applied Microbiology 15:987–993
    [Google Scholar]
  8. Dubois M., Gilles K. A., Hamilton J. K., Rebers P. A., Smith F. 1956; Colorimetric method for determination of sugars and related compounds.. Analytical Chemistry 28:350–356
    [Google Scholar]
  9. Fusee M. C., Leatherwood J. M. 1972; Regulation of cellulase from Ruminococcus. Canadian Journal of Microbiology 18:347–353
    [Google Scholar]
  10. Halliwell G. 1957; Cellulolysis by rumen micro-organisms.. Journal of General Microbiology 17:153–165
    [Google Scholar]
  11. Hobson P. N., Summers R. 1972; ATP pool and growth yield in Selenomonas ruminantium. Journal of General Microbiology 70:351–360
    [Google Scholar]
  12. Hopgood M. F., Walker D. J. 1969; Succinic acid production by rumen bacteria. III. Enzymic studies on the formation of succinate by Ruminococcus flavefaciens. Australian Journal of Biological Sciences 22:1413–1424
    [Google Scholar]
  13. Hungate R. E. 1947; Studies on cellulose fermentation. III. The culture and isolation of cellulose-decomposing bacteria from the rumen of cattle.. Journal of Bacteriology 53:631–645
    [Google Scholar]
  14. Hungate R. E. 1963; Polysaccharide storage and growth efficiency in Ruminococcus albus. Journal of Bacteriology 86:848–854
    [Google Scholar]
  15. Iannotti E. L., Kafkewitz D., Wolin M. J., Bryant M. P. 1973; Glucose fermentation products of Ruminococcus albus grown in continuous culture with Vibrio succinogenes: changes caused by interspecies transfer of H2.. Journal of Bacteriology 114:1231–1240
    [Google Scholar]
  16. Jarvis B. D. W., Annison E. F. 1967; Isolation, classification and nutritional requirements of cellulolytic cocci in the sheep rumen.. Journal of General Microbiology 47:295–307
    [Google Scholar]
  17. Joyner A. E., Winter W. T., Godbout D. M. 1977; Studies on some characteristics of hydrogen production by cell-free extracts of rumen anaerobic bacteria.. Canadian Journal of Microbiology 23:346–353
    [Google Scholar]
  18. King K. W. 1956; Basic properties of the dex-tranizing cellulases from the rumen of cattle.. Virginia Agricultural Experimental Station Technical Bulletin 127:3–16
    [Google Scholar]
  19. King K. W. 1959; Activation and cell-surface localization of certain β-glucosidases of the ruminal flora.. Journal of Dairy Science 62:1848–1856
    [Google Scholar]
  20. Latham M. J., Legakis N. J. 1976; Cultural factors influencing the utilization or production of acetate by Butyrivibrio fibrisolvens. Journal of General Microbiology 94:380–388
    [Google Scholar]
  21. Latham M. J., Brooker B. E., Pettipher G. L., Harris P. J. 1978; Ruminococcus flavefaciens cell coat and adhesion to cotton cellulose and to cell walls in leaves of perennial ryegrass (Lolium perenne).. Applied and Environmental Microbiology 35:156–165
    [Google Scholar]
  22. Lowry O. H., Rosebrough N. J., Farr A. L., Randall R. J. 1951; Protein measurement with the Folin phenol reagent.. Journal of Biological Chemistry 193:265–275
    [Google Scholar]
  23. Miller T. L. 1975; Pyruvate cleavage reactions of hydrogen and formate producing rumen bacteria. Abstracts. Annual Meeting of the American Society for Microbiology Abstract K20, 150
    [Google Scholar]
  24. Miller T. L., Wolin M. J. 1973; Formation of hydrogen and formate by Ruminococcus albus. Journal of Bacteriology 116:836–846
    [Google Scholar]
  25. Pettipher G. L., Latham M. J. 1978; Nutritional factors affecting growth and production of cellulase and xylanase by Ruminococcus flavefaciens. Proceedings of the Society for General Microbiology 5:45–46
    [Google Scholar]
  26. Pettipher G. L., Latham M. J. 1979; Characteristics of enzymes produced by Ruminococcus flavefaciens which degrade plant cell walls.. Journal of General Microbiology 110:21–27
    [Google Scholar]
  27. Pollock M. R. 1962; Exoenzymes. In The Bacteria vol. IV pp. 121–178 Edited by Gunsalus I. C., Stanier R. Y. New York: Academic Press;
    [Google Scholar]
  28. Prins R. A., van den Vorstenbosch C. J. A. H. V. 1975; Interrelationships between rumen microorganisms.. Miscellaneous Papers, Landbouwhoogeschool Wageningen 11:15–24
    [Google Scholar]
  29. Scheifinger C. C., Wolin M. J. 1973; Propionate formation from cellulose and soluble sugars by combined cultures of Bacteroides succinogenes and Selenomonas ruminantium. Applied Microbiology 26:789–795
    [Google Scholar]
  30. Suzuki H. 1975; Cellulase formation in Pseudomonas fluorescens var. cellulosa. In Symposium on Enzymatic Hydrolysis of Cellulose pp. 155–169 Edited by Bailey M., Enari T. -M., Linko M. Helsinki: The Finnish National Fund for Research and Development (SITRA).;
    [Google Scholar]
  31. Thiéry J. P. 1967; Mise en évidence des polysaccharides sur coupes fines en microscopie électronique.. Journal de Microscopie 6:987–1018
    [Google Scholar]
  32. de Vries W., van Wijck-Kapteyn W. M. C., Stouthamer A. H. 1973; Generation of ATP during cytochrome-linked anaerobic electron-transport in propionic acid bacteria.. Journal of General Microbiology 76:31–41
    [Google Scholar]
  33. Ziolecki A., Tomerska H., Wojciechowicz M. 1972; Pectinolytic activity of rumen streptococci.. Acta microbiologica polonica, Series A 4:183–188
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-110-1-29
Loading
/content/journal/micro/10.1099/00221287-110-1-29
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error