1887

Abstract

Summary: Regulation of glucose, fructose and sucrose catabolism was studied in grown under phototrophic conditions. The sequence of preference for the utilization of the sugar substrates was fructose, glucose, sucrose. The presence of a preferred substrate did not completely suppress the utilization of the less preferred. Glucose-6-phosphate dehydrogenase, the key enzyme of glucose and sucrose catabolism, exhibited sigmoidal substrate saturation curves and was inhibited by phosphoenolpyruvate, whereas 1-phosphofructokinase, the key enzyme of fructose catabolism, exhibited hyperbolic substrate saturation curves and was not inhibited by phosphoenolpyruvate. Since phosphoenolpyruvate is a common intermediate of glucose, fructose and sucrose catabolism, the control of glucose-6-phosphate dehydrogenase may be responsible for the preferential utilization of fructose.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-105-2-315
1978-04-01
2022-01-25
Loading full text...

Full text loading...

/deliver/fulltext/micro/105/2/mic-105-2-315.html?itemId=/content/journal/micro/10.1099/00221287-105-2-315&mimeType=html&fmt=ahah

References

  1. Amaral D., Kornberg H. L. 1975; Regulation of fructose uptake by glucose in Escherichia coli. Journal of General Microbiology 90:157–168
    [Google Scholar]
  2. Bag J. 1974; Glucose inhibition of the transport and phosphoenolpyruvate-dependent phosphorylation of galactose and fructose in Vibrio cholerae. Journal of Bacteriology 118:764–767
    [Google Scholar]
  3. Bang S. S., Baumann P., Sawyer M. H. 1977; Properties of 1-phosphofructokinase from Pseudomonas putida. Canadian Journal of Microbiology 23:721–725
    [Google Scholar]
  4. Baumann L., Baumann P. 1975; Catabolism of D-fructose and D-ribose by Pseudomonas doudo-roffii. II. Properties of 1-phosphofructokinase and 6-phosphofructokinase. . Archives of Microbiology 105:241–248
    [Google Scholar]
  5. Blackkolb F., Schlegel H. G. 1968; Regulation der Glucose-6-Phosphat-Dehydrogenase aus Hydrogenomonas H16 durch ATP und NADH2. Archiv für Mikrobiologie 63:177–196
    [Google Scholar]
  6. Clark B., Holms W. H. 1976; Control of sequential utilization of glucose and fructose by Escherichia coli. Journal of General Microbiology 95:191–201
    [Google Scholar]
  7. Conrad R., Schlegel H. G. 1974; Different pathways for fructose and glucose utilization in Rhodopseudomonas capsulata and demonstration of 1-phosphofructokinase in phototrophic bacteria. Biochimica et biophysica acta 358:221–225
    [Google Scholar]
  8. Conrad R., Schlegel H. G. 1977a; Different degradation pathways for glucose and fructose in Rhodopseudomonas capsulata. Archives of Microbiology 112:39–48
    [Google Scholar]
  9. Conrad R., Schlegel H. G. 1977b; Influence of aerobic and phototrophic growth conditions on the distribution of glucose and fructose carbon into the Entner-Doudoroflf and the Embden-Meyerhof pathways in Rhodopseudomonas sphaeroides. Journal of General Microbiology 101:277–290
    [Google Scholar]
  10. Conrad R., Schlegel H. G. 1978; An alternative pathway for the degradation of endogenous fructose during the catabolism of sucrose in Rhodopseudomonas capsulata. Journal of General Microbiology 105:305–313
    [Google Scholar]
  11. Eidels L., Preiss J. 1970; Carbohydrate metabolism in Rhodopseudomonas capsulata: enzyme titers, glucose metabolism and polyglucose polymer synthesis. Archives of Biochemistry and Biophysics 140:75–89
    [Google Scholar]
  12. Herbert D., Kornberg H. L. 1976; Glucose transport as rate-limiting step in the growth of Escherichia coli on glucose. Biochemical Journal 156:477–480
    [Google Scholar]
  13. Hugo von H., Gottschalk G. 1974; Purification and properties of 1-phosphofructokinase from Clostridium pasteurianum. European Journal of Biochemistry 48:455–463
    [Google Scholar]
  14. Kornberg H. L. 1972; Nature and regulation of hexose uptake of Escherichia coli. In The Molecular Basis of Biological Transport, Miami Winter Symposium 3 pp. 157–180 Woessner J.F. Jr Huijing F. Edited by New York, London: Academic Press;
    [Google Scholar]
  15. Kornberg H. L., Jones-Mortimer M. C. 1977; The phosphotransferase system as a site of cellular control. Symposia of the Society for General Microbiology 27:217–240
    [Google Scholar]
  16. Krulwich T. A., Ensign J. C. 1969; Alteration of glucose metabolism of Arthrobacter crys-tallopoietes by compounds which induce sphere to rod morphogenesis. Journal of Bacteriology 97:526–534
    [Google Scholar]
  17. Kundig W. 1974; Molecular interactions in the bacterial phosphoenolpyruvate-phosphotransfe-rase system (PTS). Journal of Supramolecular Structure 2:695–714
    [Google Scholar]
  18. Lessie T., Neidhardt F. C. 1967; ATP-linked control of Pseudomonas aeruginosa glucose-6-phosphate dehydrogenase. Journal of Bacteriology 93:1337–1345
    [Google Scholar]
  19. Neijssel O. M., Hueting S., Tempest D. W. 1977; Glucose transport capacity is not the rate-limiting step in the growth of some wildtype strains of Escherichia coli and Klebsiella aerogenes in chemostat culture. FEMS Microbiology Letters 2:1–3
    [Google Scholar]
  20. Ohmann E., Borris R., Rindt K. P. 1970; Glucose-6-Phosphat-Dehydrogenase in autotro-phen Mikroorganismen II. Die Regulation der Aktivität der Glucose-6-Phosphat-Dehydroge-nase in Euglena gracilis und Rhodopseudomonas spheroides. Zeitschrift für allgemeine Mikrobiologie 10:37–53
    [Google Scholar]
  21. Opitz R. 1977 Die Verwertung organischer Substrate und die Regulation der Abbauwege bei Corynebacterium autotrophicum Stamm 19/-/x Ph.D. thesis Göttingen:
    [Google Scholar]
  22. Postma P. W., Roseman S. 1976; The bacterial phosphoenolpyruvate: sugar phosphotransferase system. Biochimica et biophysica acta 457:213–257
    [Google Scholar]
  23. Saier M. H.Jr Feucht B. U., Hofstadter L. J. 1976; Regulation of carbohydrate uptake and adenylate cyclase activity mediated by the enzymes II of the phosphoenolpyruvate: sugar phosphotransferase system in Escherichia coli. Journal of Biological Chemistry 251:883–892
    [Google Scholar]
  24. Sapico V., Anderson R. L. 1969; d-Fructose 1-phosphate kinase and d-fructose 6-phosphate kinase from Aerobacter aerogenes. A comparative study of regulatory properties. Journal of Biological Chemistry 244:6280–6288
    [Google Scholar]
  25. Schindler J., Schlegel H. G. 1969; Regulation der Glucose-6-Phosphat-Dehydrogenase aus verschiedenen Bakterien durch ATP. Archiv für Mikrobiologie 66:69–78
    [Google Scholar]
  26. Schlegel H. G., Trüper H. G. 1966; Repression of enzyme formation in Hydrogenomonas strain h16 G+ by molecular hydrogen and by fructose. Antonie van Leeuwenhoek 32:277–292
    [Google Scholar]
  27. Senior P. J., Dawes E. A. 1971; Poly-β-hydroxybutyrate biosynthesis and the regulation of glucose metabolism in Azotobacter beijerinckii. Biochemical Journal 125:55–66
    [Google Scholar]
  28. Shedlarsky J. G.Jr 1974; Glucose 6-phosphate dehydrogenase from Caulobacter crescentus. Biochimica et biophysica acta 358:33–43
    [Google Scholar]
  29. Toit du P. J., Potgieter D. J. J., Villiers De V. 1972; A study of the properties of 1-phospho-fructokinase isolated from Clostridium pasteurianum. Enzymologia 43:285–300
    [Google Scholar]
  30. Tunail N., Schlegel H. G. 1972; Phosphoenolpyruvate, a new inhibitor of glucose-6-phosphate dehydrogenase. . Biochemical and Biophysical Research Communications 49:1554–1560
    [Google Scholar]
  31. Wood A. P., Kelly D. P. 1977; Heterotrophic growth of Thiobacillus a2 on sugars and organic acids. Archives of Microbiology 113:257–264
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-105-2-315
Loading
/content/journal/micro/10.1099/00221287-105-2-315
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error