1887

Abstract

The mean base compositions of DNA from 27 strains of and ranged from 43·4 to 53·2 mol % GC with genome sizes from 3·04 × 10 to 4·23 × 10 daltons. On the basis of DNA-DNA binding, estimated spectrophotometrically from initial renaturation rates, strains were heterogeneous in the extent to which they shared similar nucleotide sequences, and were divided into four DNA homology groups. The DNA characteristics of strains in these groups correlated with several biochemical characteristics that facilitated identification of clinical isolates of The two species and appear to be synonymous and none of the four groups of was related in DNA sequences to should therefore be retained as a single species and characteristics for identifying the various groups within the species are listed.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-104-1-127
1978-01-01
2021-08-04
Loading full text...

Full text loading...

/deliver/fulltext/micro/104/1/mic-104-1-127.html?itemId=/content/journal/micro/10.1099/00221287-104-1-127&mimeType=html&fmt=ahah

References

  1. Bak A. L., Christensen C., Stenderup A. 1970; Bacterial genome sizes determined by DNA renaturation studies. Journal of General Microbiology 64:377–380
    [Google Scholar]
  2. Barnes E. M., Melton W. 1971; Extracellular enzymic activity of poultry spoilage bacteria. Journal of Applied Bacteriology 34:599–609
    [Google Scholar]
  3. Baumann L., Baumann P., Mandel M., Allen R. D. 1972; Taxonomy of aerobic marine eubacteria. Journal of Bacteriology 110:402–429
    [Google Scholar]
  4. Bradley S. G. 1973; Relationships among mycobacteria and nocardiae based upon deoxyribonucleic acid reassociation. Journal of Bacteriology 113:645–651
    [Google Scholar]
  5. Brenner D. J. 1973; Deoxyribonucleic acid reassociation in the taxonomy of enteric bacteria. International Journal of Systematic Bacteriology 23:298–307
    [Google Scholar]
  6. Brenner D. J., Fanning G. R., Rake A. V., Johnson K. E. 1969; Batch procedure for thermal elution of DNA from hydroxyapatite. Analytical Biochemistry 28:447–459
    [Google Scholar]
  7. Britten R. J., Kohne D. E. 1966; Nucleotide sequence repetition in DNA. Carnegie Institution, Washington, Yearbook 65:78–106
    [Google Scholar]
  8. Colwell R. R., Citarella R. V., Ryman I. 1965; Deoxyribonucleic acid base composition and Adansonian analysis of heterotrophic, aerobic pseudomonads. Journal of Bacteriology 90:1148–1149
    [Google Scholar]
  9. Crombach W. H. J. 1974a; Relationships among coryneform bacteria from soil, cheese and sea fish. Antonie van Leeuwenhoek 40:347–359
    [Google Scholar]
  10. Crombach W. H. J. 1974b; Thermal stability of homologous and heterologous bacterial DNA duplexes. Antonie van Leeuwenhoek 40:133–144
    [Google Scholar]
  11. Debois J., Degreef H., Vandepitte J., Spaepen J. 1975; Pseudomonas putrefaciens as a cause of infection in humans. Journal of Clinical Pathology 28:993–996
    [Google Scholar]
  12. De Ley J. 1969; Compositional nucleotide distribution and the theoretical prediction of homology in bacterial DNA. Journal of Theoretical Biology 22:89–116
    [Google Scholar]
  13. De Ley J. 1970; Reexamination of the association between melting point, buoyant density, and chemical base composition of deoxyribonucleic acid. Journal of Bacteriology 101:738–754
    [Google Scholar]
  14. De Ley J., Park I. W., Tijtgat R., Van Ermengen J. 1966; DNA homology and taxonomy of PseudomonasXanthomonas. Journal of General Microbiology 42:43–56
    [Google Scholar]
  15. De Ley J., Cattoir H., Reynaerts A. 1970; The quantitative measurement of DNA hybridization from renaturation rates. European Journal of Biochemistry 12:133–142
    [Google Scholar]
  16. Derby H. A., Hammer B. W. 1931; Bacteriology of butter. IV. Bacteriological studies on surface taint butter. Iowa Agricultural Experimental Station Research Bulletin 145:389–416
    [Google Scholar]
  17. Doudoroef M., Palleroni N. J. 1974; Genus 1.Pseudomonas Migula 1894. In Berge’s Manual of Determinative Bacteriology, 8th edn.. p. 217 Buchanan R.E, Gibbons N.E. Edited by Baltimore: Williams & Wilkins;
    [Google Scholar]
  18. Fourquet R., Coulanges P., Goasguen J., Boehrer J.-L. 1975; Premières souches de Pseudomonas putrefaciens isolées à Madagascar. Archives de l’Institut Pasteur de Madagascar 44:49–55
    [Google Scholar]
  19. Gilardi G. L. 1972; Infrequently encountered Pseudomonas species causing infections in man. Annals of Internal Medicine 77:211–215
    [Google Scholar]
  20. Gibbins A. M., Gregory K. F. 1972; Relatedness among RhizobiumAgrobacterium species determined by three methods of nucleic acid hybridization. Journal of Bacteriology 111:129–141
    [Google Scholar]
  21. Gilles M., De Ley J. 1975; Determination of the molecular complexity of double-stranded phage genome DNA from initial renaturation rates. The effect of DNA base composition. Journal of Molecular Biology 98:447–464
    [Google Scholar]
  22. Gillis M., De Ley J., De Cleene M. 1970; The determination of molecular weight of bacterial genome DNA from renaturation rates. European Journal of Biochemistry 12:143–153
    [Google Scholar]
  23. Hansen A. J., Weeks O. B., Colwell R. R. 1965; Taxonomy of Pseudomonas piscicida (Bein) Buck, Meyers, and Leifson. Journal of Bacteriology 89:752–761
    [Google Scholar]
  24. Herbert R. A., Hendrie M. S., Gibson D. M., Shewan J. M. 1971; Bacteria active in the spoilage of certain sea foods. Journal of Applied Bacteriology 34:41–50
    [Google Scholar]
  25. Hill L. R. 1968; The determination of deoxyribonucleic acid base compositions and its application to bacterial taxonomy. In Identification Methods for Microbiologists part B pp. 177–186 Gibbs B.M, Shapton D.A. Edited by London: Academic Press;
    [Google Scholar]
  26. Holmes B., Lapage S. P., Malnick H. 1975; Strains of Pseudomonas putrefaciens from clinical material. Journal of Clinical Pathology 28:149–155
    [Google Scholar]
  27. Hugh R. 1970; A practical approach to the identification of certain nonfermentative Gramnegative rods encountered in clinical specimens. Public Health Laboratory 28:168–187
    [Google Scholar]
  28. Iizuka H., Komagata K. 1964; Microbiological studies on petroleum and natural gas. II. Determination of pseudomonads isolated from oil-brines and related materials. Journal of General and Applied Microbiology, Tokyo 10:223–231
    [Google Scholar]
  29. King E. O. 1964; The Identification of Unusual Pathogenic Gram-negative Bacteria, CDC Monograph. Atlanta, Georgia: Public Health Service, Department of Health, Education, Welfare;
    [Google Scholar]
  30. Lapage S. P., Sneath P. H. A., Lessel E. F., Skerman V. B. D., Seeliger H. P. R., Clark W. A.editors 1975 International Code of Nomenclature of Bacteria. Washington: American Society for Microbiology;
    [Google Scholar]
  31. Lee J. V., Gibson D. M., Shewan J. M. 1977; A numerical taxonomic study of some Pseudomonas-like marine bacteria. Journal of General Microbiology 98:439–451
    [Google Scholar]
  32. Levin R. E. 1968; Detection and incidence of specific species of spoilage bacteria on fish. I Methodology. Applied Microbiology 16:1734–1737
    [Google Scholar]
  33. Levin R. E. 1972; Correlation of DNA base composition and metabolism of Pseudomonas putrefaciens isolates from food, human clinical specimens, and other sources. Antonie van Leeuwenhoek 38:121–127
    [Google Scholar]
  34. Levin R. E., Van Sickle C. 1976; Autolysis of high-GC isolates of Pseudomonas putrefaciens. Antonie van Leeuwenhoek 42:145–155
    [Google Scholar]
  35. Long H. F., Hammer B. W. 1941; Classification of organisms important in dairy products. III.Pseudomonas putrefaciens. Iowa Agricultural Experimental Station Research Bulletin 285:176–195
    [Google Scholar]
  36. Mandel M. 1966; Deoxyribonucleic acid base composition in the genus Pseudomonas. Journal of General Microbiology 43:273–292
    [Google Scholar]
  37. Mandel M., Weeks O. B., Colwell R. R. 1965; Deoxyribonucleic acid base composition of Pseudomonas piscicida. Journal of Bacteriology 90:1492–1493
    [Google Scholar]
  38. Marmur J. 1961; A procedure for the isolation of deoxyribonucleic acid from micro-organisms. Journal of Molecular Biology 3:208–218
    [Google Scholar]
  39. Marmur J., Doty P. 1962; Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. Journal of Molecular Biology 5:109–118
    [Google Scholar]
  40. Martini A., Phaff H. J. 1973; The optical determination of DNA-DNA homologies in yeasts. Annali di Microbiologia ed Enzimologia 23:59–68
    [Google Scholar]
  41. Minagawa M. 1963; Studies on the strains closely related to Vibrio parahaemolyticus and reddish brown pigment-producing Pseudomonas isolated from the stools of patients of acute enteritis. Annual Report of the Institute of Food Microbiology, (Chiba University) 16:9–23
    [Google Scholar]
  42. Normore W. M. 1973; Guanine-plus-cytosine (GC) composition of the DNA of bacteria, fungi, algae and protozoa. In CRC Handbook of Microbiology II Microbial Composition pp. 585–740 Laskin A. I., Lechevalier H.A. Edited by Cleveland: CRC Press;
    [Google Scholar]
  43. Owen R. J., Snell J. J. S. 1976; Deoxyribonucleic acid reassociation in the classification of flavobacteria. Journal of General Microbiology 93:89–102
    [Google Scholar]
  44. Palleroni N. J., Ballard R. W., Ralston E., Doudoroff M. 1972; Deoxyribonucleic acid homologies among some Pseudomonas species. Journal of Bacteriology 110:1–11
    [Google Scholar]
  45. Pivnick H. 1955; Pseudomonas rubescens, a new species from soluble oil emulsions. Journal of Bacteriology 70:1–6
    [Google Scholar]
  46. Riley P. S., Tatum H. W., Weaver R. E. 1972; Pseudomonas putrefaciens isolates from clinical specimens. Applied Microbiology 24:798–800
    [Google Scholar]
  47. Rosenthall S. L., Zuger J. H., Apollo E. 1975; Respiratory colonization with Pseudomonas putrefaciens after near-drowning in salt water. American Journal of Clinical Pathology 64:382–384
    [Google Scholar]
  48. Shewan J. M. 1971; The microbiology of fish and fishery products - a progress report. Journal of Applied Bacteriology 34:299–315
    [Google Scholar]
  49. Swings J., De Ley J. 1975; Genome deoxyribonucleic acid of the genus Zymomonas Kluyver and van Niel 1936: base composition, size and similarities. International Journal of Systematic Bacteriology 25:324–328
    [Google Scholar]
  50. Von Graevenitz A., Simon G. 1970; Potentially pathogenic, nonfermentative, H2S-producing Gram-negative rod (lb). Applied Microbiology 19:176
    [Google Scholar]
  51. Williams J. L., Levin R. E. 1975; Bacteriocin typing of Pseudomonas putrefaciens from food, human clinical specimens, and other sources. Antonie van Leeuwenhoek 41:97–100
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-104-1-127
Loading
/content/journal/micro/10.1099/00221287-104-1-127
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error