1887

Abstract

Antibiotic resistances of two sets of transductants (along with those of their smooth and sister transductants) were measured. One set was derived from a smooth LT2 parent and the other from a smooth LT7 parent. Results showed that strains with defects at the (R-res-2) level and deeper were more susceptible to bacitracin, novobiocin and polymyxin. Those with defects at the level or deeper were in addition more sensitive to vancomycin, erythromycin, oxacillin and nafcillin. At these levels the presence or absence of galactose I or glucose I from the lipopolysaccharide core made a considerable difference. A heptose-less mutant was the most sensitive of the strains tested to the above named antibiotics. Strains with lesions at several levels of defect showed slight increases in resistances to tetracycline, cephalothin, ampicillin and penicillin.

One would expect strains with mutations to be similar to (R-res-2) strains and those with mutations to be similar to strains if the core defects accounted for the differing antibiotic resistances. They proved to be so except that the and strains in the FIRN line were as resistant to novobiocin as were smooth strains.

The results are interpreted in respect to Nikaido's hypothesis that hydrophilic antibiotics with molecular weights of less than about 650 can gain access to the periplasmic space through protein-lined, water-filled pores and that hydrophobic ones can gain access in deep rough strains when phospholipid patches appear on the surface due to absence of polysaccharides and proteins.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-103-2-223
1977-12-01
2021-08-04
Loading full text...

Full text loading...

/deliver/fulltext/micro/103/2/mic-103-2-223.html?itemId=/content/journal/micro/10.1099/00221287-103-2-223&mimeType=html&fmt=ahah

References

  1. Ames G. F. L., Spudich E. N., Nikaido H. 1974; Protein composition of the outer membrane of Salmonella typhimurium: effect of lipo-polysaccharide mutations. Journal of Bacteriology 117:406–416
    [Google Scholar]
  2. Boman H. G., Monner D. A. 1975; Characterization of lipopolysaccharides from Escherichia coli K12 mutants. Journal of Bacteriology 121:455–464
    [Google Scholar]
  3. Boman H. G., Nordström K., Normark S. 1974; Penicillin-resistance in Escherichia coli K12: synergism between penicillinases and a barrier in the outer part of the envelope. Annals of the New York Academy of Sciences 253:569–585
    [Google Scholar]
  4. Ennis H. L. 1971; Mutants of Escherichia coli sensitive to antibiotics. Journal of Bacteriology 107:486–490
    [Google Scholar]
  5. Eriksson-Grennberg K. G., Nordström K., Englund P. 1971; Resistance of Escherichia coli to penicillins. IX. Genetics and physiology of class II ampicillin-resistant mutants that are galactose negative or sensitive to bacteriophage C21 or both. Journal of Bacteriology 108:1210–1223
    [Google Scholar]
  6. Hellerqvist C. G., Lindberg A. A. 1971; Structural studies of the common core polysaccharide of the cell-wall lipopolysaccharide from Salmonella typhimurium. Carbohydrate Research 16:39–48
    [Google Scholar]
  7. Jousimies H., Mäkelä P. H. 1974; Genetic analysis of Salmonella minnesota R mutants with defects in the biosynthesis of the lipopoly-saccharide core. Journal of Bacteriology 119:753–759
    [Google Scholar]
  8. Kjrishnapillai V., Macphee D. G., Stocker B. A. D. 1971; Properties of a Salmonella typhimurium mutant with an incomplete deficiency of uridinediphosphogalactose-4-epimerase. Journal of Bacteriology 107:155–161
    [Google Scholar]
  9. Kuo T.-T., Stocker B. A. D. 1970; ES18, a general transducing phage for smooth and nonsmooth Salmonella typhimurium. Virology 42:621–632
    [Google Scholar]
  10. Kuo T.-T., Stocker B. A. D. 1972; Mapping of rfa genes in Salmonella typhimurium by ES18 and P22 transduction and by conjugation. Journal of Bacteriology 112:48–57
    [Google Scholar]
  11. Leive L. 1965; Release of lipopolysaccharide by EDTA treatment of E. coli. Biochemical and Biophysical Research Communications 21:290–296
    [Google Scholar]
  12. Leive L. 1968; Studies on the permeability change produced in coliform bacteria by ethylene-diaminetetraacetate. Journal of Biological Chemistry 243:2373–2380
    [Google Scholar]
  13. Leive L. 1974; The barrier function of the gramnegative envelope. Annals of the New York Academy of Sciences 235:109–127
    [Google Scholar]
  14. Leive L., Shovlin V. K., Mergenhagen S. E. 1968; Physical, chemical, and immunological properties Of lipopolysaccharide released from Escherichia coli by ethylenediaminetetraacetate. Journal of Biological Chemistry 243:6384–6391
    [Google Scholar]
  15. Mach B., Tatum E. L. 1963; Ribonucleic acid synthesis in protoplasts of Escherichia coli: inhibition by actinomycin D. Science 139:1051–1052
    [Google Scholar]
  16. Macphee D. G., Krishnapillai V., Roantree R. J., Stocker B. A. D. 1975; Mutations in Salmonella typhimurium conferring resistance to Felix O phage without loss of smooth character. Journal of General Microbiology 87:1–10
    [Google Scholar]
  17. Macphee D. G., Stocker B. A. D. 1969; Suppression of amber and ochre mutants in Salmonella typhimurium by a mutant F′-i-gal factor carrying an ochre suppressor gene. Journal of Bacteriology 100:240–246
    [Google Scholar]
  18. Mäkelä P. H., Mayer H., Whang H. Y., Neter E. 1974; Participation of lipopolysaccharide genes in the determination of the enterobacterial common antigen: analysis of R mutants of Salmonella minnesota. Journal of Bacteriology 119:760–764
    [Google Scholar]
  19. Mayer H., Rapin A. M. C., Schmidt G., Boman H. G. 1976; Immunochemical studies on lipopolysaccharides from wild-type and mutants of Escherichia coli K12. European Journal of Biochemistry 66:357–368
    [Google Scholar]
  20. Monner D. A., Jonsson S., Boman H. G. 1971; Ampicillin-resistant mutants of Escherichia coli K12 with lipopolysaccharide alterations affecting mating ability and susceptibility to sex-specific bacteriophages. Journal of Bacteriology 107:420–432
    [Google Scholar]
  21. Morgenroth A., Duguid J. P. 1968; Demonstration of different mutational sites controllingrhamnose fermentation in FIRN and non-FIRN rhamnose-negative strains of Salmonella typhimurium: an essay in bacterial archaeology. Genetical Research 11:151–169
    [Google Scholar]
  22. Mühlradt P., Risse H. J., Lüderitz O., Westphal O. 1968; Biochemical studies on lipopolysaccharides of Salmonella R mutants. 5. Evidence for a phosphorylating enzyme in lipopolysaccharide synthesis. European Journal of Biochemistry 4:139–145
    [Google Scholar]
  23. Muschel L. H., Gustafson L. 1968; Antibiotic, detergent, and complement sensitivity of Salmonella typhi after ethylenediaminetetraacetic acid treatment. Journal of Bacteriology 95:2010–2013
    [Google Scholar]
  24. Nakae T. 1976; Outer membrane of Salmonella. Isolation of protein complex that produces transmembrane channels. Journal of Biological Chemistry 251:2176–2178
    [Google Scholar]
  25. Nakae T., Nikaido H. 1971; Multiple molecular forms of uridinediphosphate glucose pyro- phosphorylase from Salmonella typhimurium. II.Genetic determination of multiple forms. Journal of Biological Chemistry 246:4397–4403
    [Google Scholar]
  26. Nelson B. W., Roantree R. J. 1967; Analyses of lipopolysaccharides extracted from penicillin-resistant, serum-sensitive Salmonella mutants. Journal of General Microbiology 48:179–188
    [Google Scholar]
  27. Nikaido H. 1976; Outer membrane of Salmonella. Transmembrane diffusion of some hydrophobic molecules. Biochimica et biophysica acta 433:118–132
    [Google Scholar]
  28. Osborn M. J. 1968; Biochemical characterization of mutants of Salmonella typhimurium lacking glucosyl or galactosyl lipopolysaccharide transferases. Nature; London: 217957–960
    [Google Scholar]
  29. Rifkind D. 1967; Studies on the interaction between endotoxin and polymyxins. Journal of Infectious Diseases 117:433–438
    [Google Scholar]
  30. Roantree R. J., Kuo T.-T., Macphee D. G., Stocker B. A. D. 1969a; The effect of various rough lesions in Salmonella typhimurium upon sensitivity to penicillins. Clinical Research 17:157
    [Google Scholar]
  31. Roantree R. J., Kuo T.-T., Macphee D. G., Stocker B. A. D. 1969; .Effect of various rough lesions in Salmonella typhimurium upon sensitivity to antibiotics. Bacteriological Proceedings 79:
    [Google Scholar]
  32. Sanderson K. E., Saeed H. 1972; Insertion of the F factor into the cluster of rfa (rough A) genes of Salmonella typhimurium. Journal of Bacteriology 112:58–63
    [Google Scholar]
  33. Sanderson K. E., Saeed Y. A. 1972; P22-mediated transduction of the rough A (rfa) genes of Salmonella typhimurium. Journal of Bacteriology 112:64–73
    [Google Scholar]
  34. Schlecht S., Schmidt G. 1969; Möglichkeiten zur Differenzierung von Salmonella-R-Formenmittels Antibiotica und antibakterieller Farbstoffe. Zentralblatt für Bakteriologie, Parasitenkunde, Infektionskrankheiten und Hygiene (Abteilung I) 212:505–511
    [Google Scholar]
  35. Schlecht S., Schmidt G. 1970; Untersuchun-gen zur Typisierung von Salmonella-R-Formen. 5 Mitteilung: Untersuchungen an Salmonellai ruiru Mutanten. Zentralblatt für Bakteriologie, Parasitenkunde, Infektionskrankheiten und Hygiene (Abteilung I) 215:196–202
    [Google Scholar]
  36. Schlecht S., Schmidt G. 1972; Untersuchungen zur Typisierung von Salmonella-R-Formen. 6 Mitteilung: Untersuchungen an Salmonella typhimurium Mutanten. Zentralblatt für Bakteriologie, Parasitenkunde, Infektionskrankheiten und Hygiene (Abteilung I) 219:480–493
    [Google Scholar]
  37. Schlecht S., Westphal O. 1970; Untersuchungen zur Typisierung von Salmonella-R-Formen. 4 Mitteilung: Typisierung von S. minnesota R-Mutantenmittels Antibiotica. Zentralblatt für Bakteriologie, Parasitenkunde, Infektionskrankheiten und Hygiene (Abteilung I) 213:356–381
    [Google Scholar]
  38. Schmidt G., Schlecht S., Westphal O. 1969; Untersuchungen zur Typisierung von Salmonella- R-Formen. 3 Mitteilung: Typisierung von S. minnesota R-Mutantenmittels chemischer Agenzien. Zentralblatt für Bakteriologie, Parasitenkunde, Infektionskrankheiten und Hygiene (Abteilung I) 212:88–96
    [Google Scholar]
  39. Smit J., Kamio Y., Nikaido H. 1975; Outer membrane of Salmonella typhimurium: chemical analysis and freeze-fracture studies with lipopolysaccharide mutants. Journal of Bacteriology 124:942–958
    [Google Scholar]
  40. Strominger J. L., Izaki K., Matsuhashi M., Tipper D. J. 1967; Peptidoglycan transpeptidase and d-alanine carboxypeptidase: penicillin-sensitive enzymatic reactions. Federation Proceedings 26:4–28
    [Google Scholar]
  41. Sud I. J., Feingold D. S. 1972; Effect of polymyxin B on antibiotic resistant Proteus mirabilis. Antimicrobial Agents and Chemotherapy 1:417–421
    [Google Scholar]
  42. Tamaki S., Matsuhashi M. 1973; Increase in sensitivity to antibiotics and lysozyme on deletion of lipopolysaccharides in Escherichia coli strains. Journal of Bacteriology 114:453–454
    [Google Scholar]
  43. Tamaki S., Sato T., Matsuhashi M. 1971; Role of lipopolysaccharides in antibiotic resistance and bacteriophage adsorption of Escherichia coli K12. Journal of Bacteriology 105:968–975
    [Google Scholar]
  44. Wilkinson R. G., Gemski P., Stocker B. A. D. 1972; Non-smooth mutants of Salmonella typhimurium: differentiation by phage sensitivity and genetic mapping. Journal of General Microbiology 70:527–554
    [Google Scholar]
  45. Wu H. C. 1972; Isolation and characterization of an E. coli mutant with alteration in the outer membrane proteins of the cell envelope. Biochimica et biophysica acta 290:274–289
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-103-2-223
Loading
/content/journal/micro/10.1099/00221287-103-2-223
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error