1887

Abstract

A converting phage for ampicillin resistance - phage 5006Mp - was used to transduce strain 5006 to ampicillin resistance. The infecting phage carried TnI as the source of its phenotype. The recipient had the conjugative plasmid P- as well as a non-self-transmissible plasmid as residents. The latter was a recombinant between a morganocinogenic plasmid Mor174 and R plasmid R772 which coded for kanamycin resistance. This recombinant plasmid had possibly undergone transductional shortening as a result of previous uptake by transducing phage 5006M. From these transductants, three transducing systems for transfer of morganocinogeny were obtained. The first consisted of the complete transduction of a plasmid expressing markers of Mor174 and ampicillin resistance at frequencies of about 1 × 10 per phage particle adsorbed. This frequency could have equalled that of the adsorption of transducing phage to recipient cells. The transduced plasmid was formed by translocation of Tn1 to the Mor174R772 complex with inactivation of the kanamycin resistance marker of the latter. The transducing phage was named phage 5006M The second - a high frequency transducing system for morganocinogeny, kanamycin and ampicillin resistances - was the result of markers of the Mor174R772 complex inserting contiguously to Tn1 in the 5006M-5006 cryptic prophage sequence. The insertion converted the terminally redundant, circularly permuted phages into deficient phages lacking some (not always the same) genes and being unable to circularize (and hence lysogenize) due to lack of terminal repetition. The recombination of two defective genomes resulted in doublets which could reduce to the prophage state. This mutual aid explained the phage multiplicity dependence phenomenon encountered with this system. The phage was named phage 5006 The third system of transduction resulted from deletion of non-essential genes from the oversized genomes just described. This restored terminal redundancy and consequently allowed individual genomes to circularize and thus transduce the three markers. This phage was named phage 5006Mdp These phages also transduced their markers to , a strain to which only slight and variable adsorption of the phage could be demonstrated. Properties of the systems are described.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-103-1-165
1977-11-01
2021-05-09
Loading full text...

Full text loading...

/deliver/fulltext/micro/103/1/mic-103-1-165.html?itemId=/content/journal/micro/10.1099/00221287-103-1-165&mimeType=html&fmt=ahah

References

  1. Adams M. H. 1956; Methods of study of bacterial viruses. Methods in Medical Research 2:1–73
    [Google Scholar]
  2. Ahmed A., Johansen E. 1975; Reversion of the gall mutation of Escherichia coli: partial deletion of the insertion sequence. Molecular and General Genetics 142:263–275
    [Google Scholar]
  3. Arber W. 1960; Transduction of chromosomal genes and episomes in Escherichia coli. Virology 11:273–288
    [Google Scholar]
  4. Berg D. E., Davies J., Allet B., Rochaix J. D. 1975; Transposition of R factor genes to bacteriophage λ. Proceedings of the National Academy of Sciences of the United States of America 72:3628–3632
    [Google Scholar]
  5. Botstein D. 1968; Synthesis and maturation of phage P22DNA. I. Identification of intermediates. Journal of Molecular Biology 34:621–641
    [Google Scholar]
  6. Bramucci M. G., Lovett P. S. 1976; Low frequency, PBSI-mediated plasmid transduction in Bacillus pumilus. Journal of Bacteriology 127:829–831
    [Google Scholar]
  7. Brandis H., Schwarzrock A. 1956; Über Proteus-Bakteriophagen. Zentralblatt für Bakteriologie, Parasitenkunde, Infektionskrankheiten und Hygiene (Abteilung I, Originale) 165:226–232
    [Google Scholar]
  8. Cabezón T., Faelen M., De Wilde M., Bollen A., Thomas R. 1975; Expression of ribosomal protein genes in Escherichia coli. Molecular and General Genetics 137:125–129
    [Google Scholar]
  9. Campbell A. 1962; Episomes. Advances in Genetics 12:101–145
    [Google Scholar]
  10. Chan R. K., Botstein D. 1976; Specialized transduction by bacteriophage P22 in Salmonella typhimurium: genetic and physical structure of the transducing genomes and the prophage attachment site. Genetics 83:433–458
    [Google Scholar]
  11. Chan R. K., Botstein D., Watanabe T., Ogata Y. 1972; Specialized transduction of tetracycline resistance by phage P22 in Salmonella typhimurium. Virology 50:883–898
    [Google Scholar]
  12. Clowes R. C., Hayes W. 1968 Experiments in Microbial Genetics p. 227 Oxford and Edinburgh: Blackwell Scientific Publications;
    [Google Scholar]
  13. Coetzee J. N. 1961; Lysogenic conversion in the genus Proteus. Nature; London: 189946–947
    [Google Scholar]
  14. Coetzee J. N. 1974a; Properties of Proteus and Providence strains harbouring recombinant plasmids between P-lac and R1drd19 or R447b. Journal of General Microbiology 80:119–130
    [Google Scholar]
  15. Coetzee J. N. 1974b; High frequency transduction of kanamycin resistance in Proteus mirabilis. Journal of General Microbiology 84:285–296
    [Google Scholar]
  16. Coetzee J. N. 1975a; High frequency transduction of ampicillin and kanamycin resistance in Proteus mirabilis. Journal of General Microbiology 87:173–176
    [Google Scholar]
  17. Coetzee J. N. 1975b; Transduction of a Proteus vulgaris strain by a P.mirabilis bacteriophage. Journal of General Microbiology 89:299–309
    [Google Scholar]
  18. Coetzee J. N. 1976a; Intra-species transduction with Proteus mirabilis high frequency transducing phages. Journal of General Microbiology 93:153–165
    [Google Scholar]
  19. Coetzee J. N. 1976b; Derivation and properties of Proteus mirabilis systems for high frequency transduction of streptomycin - sulphonamide and streptomycin-sulphonamide-kanamycin resistances. Journal of General Microbiology 96:95–107
    [Google Scholar]
  20. Coetzee J. N. 1977; Derivation of a Proteus mirabilis converting phage for ampicillin resisrance. Journal of General Microbiology 99:127–138
    [Google Scholar]
  21. Coetzee J. N., Sacks T. G. 1960; Transduction of streptomycin resistance in Proteus mirabilis. Journal of General Microbiology 23:445–455
    [Google Scholar]
  22. Coetzee J. N., Smit J. A. 1969; Restriction of a transducing bacteriophage in a strain of Proteus mirabilis. Journal of General Virology 4:593–607
    [Google Scholar]
  23. Coetzee J. N., Smit J. A. 1970; Properties of Proteus mirabilis phage 13vir. Journal of General Virology 9:247–249
    [Google Scholar]
  24. Coetzee J. N., Datta N., Hedges R. W., Appelbaum P. C. 1973; Transduction of R factors in Proteus mirabilis and P. rettgeri. Journal of General Microbiology 76:355–368
    [Google Scholar]
  25. Coetzee J. N., Krizsanovich-Williams K., Williams J. A. 1977; Cotransduction of morganocinogenic plasmid 174 and R factor R772. Journal of General Microbiology 100:299–308
    [Google Scholar]
  26. Cohen S. N. 1976; Transposable genetic elements and plasmid evolution. Nature; London: 263731–738
    [Google Scholar]
  27. Dempsey W. B., Willetts N. S. 1976; Plasmid co-integrates of prophage lambda and R factor 100. Journal of Bacteriology 126:166–176
    [Google Scholar]
  28. Drexler H., Kylberg K. J. 1975; Effect of UV irradiation on transduction by coliphage T1. Journal of Virology 16:263–266
    [Google Scholar]
  29. Falkow W., Wohlhieter J. A., Citarella R. V., Baron L. S. 1964; Transfer of episomic elements to Proteus. Journal of Bacteriology 88:1598–1601
    [Google Scholar]
  30. Fredericq P., Delhalle E. 1972; Recombinaison entre facteurs R et facteurs colicinogènes chez Escherichia coliKI2. Annales de l’nstitut Pasteur 122:909–921
    [Google Scholar]
  31. Freeman R. F., Bibb M. J., Hopwood D. A. 1977; Chloramphenicol acetyltransferase- independent chloramphenicol resistance in Streptomyces coelicolor A3(2). Journal of General Microbiology 98:453–465
    [Google Scholar]
  32. Fukumaki Y., Shimada K., Takagi Y. 1976; Specialized transduction of colicin E1 DNA in Escherichia coli K-12 by phage lambda. Proceedings of the National Academy of Sciences of the United States of America 73:3238–3242
    [Google Scholar]
  33. Grabow W. O. K. 1972; Growth-inhibiting metabolities of Proteus mirabilis. Journal of Medical Microbiology 5:191–196
    [Google Scholar]
  34. Grabow W. O. K., Smit J. A. 1967; Methionine synthesis in Proteus mirabilis. Journal of General Microbiology 46:47–57
    [Google Scholar]
  35. Hardy K. G. 1975; Colicinogeny and related phenomena. Bacteriological Reviews 39:464–515
    [Google Scholar]
  36. Hedges R. W. 1975; R factors from Proteus mirabilis and P. vulgaris. Journal of General Microbiology 87:301–311
    [Google Scholar]
  37. Hedges R. W., Jacob A. E. 1974; Transposition of ampicillin resistance from RP4 to other replicons. Molecular and General Genetics 132:31–40
    [Google Scholar]
  38. Heffron F., Rubens C., Falkow S. 1975; Translocation of a plasmid DNA sequence which mediates ampicillin resistance: molecular nature and specificity of insertion. Proceedings of the National Academy of Sciences of the United States of America 72:3623–3672
    [Google Scholar]
  39. Hershfield V., Boyer H. W., Chow L., Helinski D. R. 1976; Characterization of a mini-ColEI plasmid. Journal of Bacteriology 126:447–453
    [Google Scholar]
  40. IordĂnescu S. 1975; Recombinant plasmid obtained from two different compatible staphylococcal plasmids. Journal of Bacteriology 124:597–601
    [Google Scholar]
  41. Jessop A. P. 1972; A specialized transducing phage of P22 for which the ability to form plaques is associated with transduction of the proAB region. Molecular and General Genetics 114:214–222
    [Google Scholar]
  42. Jessop A. P. 1976; Specialized transducing phages derived from phage P22 that carry the proAB region of the host, Salmonella typhimurium: genetic evidence for their structure and mode of transduction. Genetics 83:459–475
    [Google Scholar]
  43. Kleckner N., Chan R. K., Tye B. K., Botstein D. 1975; Mutagenesis by insertion of a drug- resistance element carrying an inverted repetition. Journal of Molecular Biology 97:561–575
    [Google Scholar]
  44. Kopecko D. J., Cohen S. N. 1975; Site specific recA-independent recombination between bacterial plasmids: involvement of palindromes at the recombinational loci. Proceedings of the National Academy of Sciences of the United States of America 72:1373–1377
    [Google Scholar]
  45. Krizsanovich K. 1973; Cryptic lysogeny in Proteus mirabilis. Journal of General Virology 19:311–320
    [Google Scholar]
  46. Lacey R. W. 1973; Genetic basis, epidemiology, and future significance of antibiotic resistance in Staphylococcus aureus: a review. Journal of Clinical Pathology 26:899–913
    [Google Scholar]
  47. Lee H. J., Ohtsubo E., Deonier R. C., Davidson N. 1974; Electron microscope heteroduplex studies of sequence relations among plasmids of Escherichia coli. V. ilv+ deletion mutants of F14. Journal of Molecular Biology 89:585–597
    [Google Scholar]
  48. Lovett P. S., Duvall E. J., Keggings K. M. 1976; Bacillus pumilus plasmid pPLio: properties and insertion into Bacillus subtilis 168 by transformation. Journal of Bacteriology 127:817–828
    [Google Scholar]
  49. Luria S. E., Adams J. N., Ting R. C. 1960; Transduction of lactose-utilizing ability among strains of E. coli and S. dysenteriae and the properties of the transducing phage particles. Virology 12:348–390
    [Google Scholar]
  50. Maas R. 1963; Exclusion of an F-lac episome by an HFR gene. Proceedings of the National Academy of Sciences of the United States of America 50:1051–1055
    [Google Scholar]
  51. Manly K. F., Signer E. R., Radding C. M. 1969; Nonessential functions of bacteriophage λ. Virology 37:177–188
    [Google Scholar]
  52. Pemberton J. M., Tucker W. T. 1977; Naturally occurring viral R plasmid with a circular supercoiled genome in the extracellular state. Nature; London: 26650–51
    [Google Scholar]
  53. Reif H. J., Saedler H. 1975; IS1 is involved in deletion formation in the gal region of E. coli K12. Molecular and General Genetics 137:17–28
    [Google Scholar]
  54. Reif H. J., Saedler H. 1976; IS1-dependent deletion formation in the gal region of the E. coli chromosome. Genetics 83:S61–S62
    [Google Scholar]
  55. Robinson M. K., Bennett P. M., Richmond M. H. 1977; Inhibition of TnA translocation by TnA. Journal of Bacteriology 129:407–414
    [Google Scholar]
  56. Rosner J. L. 1975; Specialized transduction of pro genes by coliphage P1. Structure of a partly diploid P1-pro prophage. Virology 66:42–55
    [Google Scholar]
  57. Scaife J., Gross J. D. 1962; Inhibition of multiplication of an F-lac factor in HFR cells of Escherichia coli K-12. Biochemical and Biophysical Research Communications 7:403–407
    [Google Scholar]
  58. Schmieger H. 1970; The molecular structure of the transducing particles of Salmonella phage P22. II. Density gradient analysis of DNA. Molecular and General Genetics 109:323–337
    [Google Scholar]
  59. Shipley P. L., Olsen R. H. 1975; Isolation of a nontransmissible antibiotic resistance plasmid by transductional shortening of R factor RP1. Journal of Bacteriology 123:20–27
    [Google Scholar]
  60. Starlinger P., Saedler H. 1972; Insertion mutations in micro-organisms. Biochimie 54:177–185
    [Google Scholar]
  61. Starlinger P., Saedler H. 1976; IS-elements in micro-organisms. Current Topics in Microbiology and Immunology 75:111–152
    [Google Scholar]
  62. Stocker B. A. D. 1956; Abortive transduction of motility in Salmonella: a non-replicated gene transmitted through many generations to a single descendant. Journal of General Microbiology 15:575–598
    [Google Scholar]
  63. Tagg J. R., Skjold S., Wannamaker L. W. 1976; Transduction of bacteriocin determinants in Group A streptococci. Journal of Experimental Medicine 143:1540–1544
    [Google Scholar]
  64. Threlfall E. J., Holland I. B. 1970; Cotransduction with serB of a pleiotropic mutation affecting colicin E2 refractivity, ultraviolet sensitivity, recombination proficiency and surface properties of Escherichia coli K12. Journal of General Microbiology 62:383–398
    [Google Scholar]
  65. Tye B. K., Chan R. K., Botstein D. 1974; Packaging of an oversize transducing genome by Salmonella phage P22. Journal of Molecular Biology 85:485–500
    [Google Scholar]
  66. Vieu J. F., Capponi M. 1965; Lysotypie des Proteus OX19, OXk, OX2 et OXL. Annales de l’Institut Pasteur 108:103–106
    [Google Scholar]
  67. Vieu J. F., Ducrest P. 1961; Notions nouvelles sur la lysotypie de Proteus hauseri: le lysotype 1. Zentralblatt für Bakteriologie, Parasitenkunde, Infektionskrankheiten und Hygiene Abteilung I, Originale 182:49–56
    [Google Scholar]
  68. Warren G., Sherratt D. 1977; Complementation of transfer deficient ColE1 mutants. Molecular and General Genetics 151:197–201
    [Google Scholar]
  69. Williams J. A. 1977; Mobilization of morganocin 174 plasmid and kinetics of morganocin production in Proteus and Escherichia coli hosts. Antimicrobial Agents and Chemotherapy 11:514–520
    [Google Scholar]
  70. Wilson G. S., Miles A. 1975 Topley and Wilson’s Principles of Bacteriology, Virology and Immunity, 6th edn.. pp. 2351–2352 London: Edward Arnold;
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-103-1-165
Loading
/content/journal/micro/10.1099/00221287-103-1-165
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error