1887

Abstract

Dinoflagellates of the genus are responsible for harmful algal blooms and produce paralytic shellfish toxins (PSTs). Their very large and complex genomes make it challenging to identify the genes responsible for toxin synthesis. A family-based genomic association study was developed to determine the inheritance of toxin production in and identify genomic regions linked to this production. We show that the ability to produce toxins is inheritable in a Mendelian way, while the heritability of the toxin profile is more complex. We developed the first dinoflagellate genetic linkage map. Using this map, several major results were obtained: 1. A genomic region related to the ability to produce toxins was identified. 2. This region does not contain any polymorphic genes, known to be involved in toxin production in cyanobacteria. 3. The genes, known to be present in a single cluster in cyanobacteria, are scattered on different linkage groups in . 4. The expression of two genes not assigned to any linkage group, and , may be regulated by the genomic region related to the ability to produce toxins. Our results provide new insights into the organization of toxicity-related genes in , suggesting a dissociated genetic mechanism for the production of the different analogues and the ability to produce toxins. However, most of the newly identified genes remain unannotated. This study therefore proposes new candidate genes to be further explored to understand how dinoflagellates synthesize their toxins.

  • This is an open-access article distributed under the terms of the Creative Commons Attribution NonCommercial License.
Loading

Article metrics loading...

/content/journal/mgen/10.1099/mgen.0.000879
2022-11-03
2024-11-06
Loading full text...

Full text loading...

/deliver/fulltext/mgen/8/11/mgen000879.html?itemId=/content/journal/mgen/10.1099/mgen.0.000879&mimeType=html&fmt=ahah

References

  1. Sturtevant AH. The linear arrangement of six sex-linked factors in Drosophila, as shown by their mode of association. J Exp Zool 1913; 14:43–59 [View Article]
    [Google Scholar]
  2. Emerson RA, Beadle GW, Fraser AC. A Summary of Linkage Studies in Maize: Memoir Ithaca, New York: Cornell University, Agricultural Experiment Station; 1935 p 84
    [Google Scholar]
  3. Ingvarsson PK, Street NR. Association genetics of complex traits in plants. New Phytol 2011; 189:909–922 [View Article]
    [Google Scholar]
  4. Alonso-Blanco C, Blankestijn-de Vries H, Hanhart CJ, Koornneef M. Natural allelic variation at seed size loci in relation to other life history traits of Arabidopsis thaliana. Proc Natl Acad Sci 1999; 96:4710–4717 [View Article]
    [Google Scholar]
  5. Juenger T, Purugganan M, Mackay TFC. Quantitative trait loci for floral morphology in Arabidopsis thaliana. Genetics 2000; 156:1379–1392 [View Article]
    [Google Scholar]
  6. Byrne M, Murrell JC, Owen JV, Williams ER, Moran GF. Mapping of quantitative trait loci influencing frost tolerance in Eucalyptus nitens. Theor Appl Genet 1997; 95:975–979 [View Article]
    [Google Scholar]
  7. Frewen BE, Chen TH, Howe GT, Davis J, Rohde A et al. Quantitative trait loci and candidate gene mapping of bud set and bud flush in populus. Genetics 2000; 154:837–845 [View Article]
    [Google Scholar]
  8. Brem RB, Yvert G, Clinton R, Kruglyak L. Genetic dissection of transcriptional regulation in budding yeast. Science 2002; 296:752–755 [View Article]
    [Google Scholar]
  9. Yvert G, Brem RB, Whittle J, Akey JM, Foss E et al. Trans-acting regulatory variation in Saccharomyces cerevisiae and the role of transcription factors. Nat Genet 2003; 35:57–64 [View Article]
    [Google Scholar]
  10. Brem RB, Kruglyak L. The landscape of genetic complexity across 5,700 gene expression traits in yeast. Proc Natl Acad Sci 2005; 102:1572–1577 [View Article]
    [Google Scholar]
  11. Tam V, Patel N, Turcotte M, Bossé Y, Paré G et al. Benefits and limitations of genome-wide association studies. Nat Rev Genet 2019; 20:467–484 [View Article]
    [Google Scholar]
  12. Kobras CM, Fenton AK, Sheppard SK. Next-generation microbiology: from comparative genomics to gene function. Genome Biol 2021; 22:123 [View Article]
    [Google Scholar]
  13. Power RA, Parkhill J, de Oliveira T. Microbial genome-wide association studies: lessons from human GWAS. Nat Rev Genet 2017; 18:41–50 [View Article]
    [Google Scholar]
  14. Shirley MW, Harvey DA. A genetic linkage map of the apicomplexan protozoan parasite Eimeria tenella. Genome Res 2000; 10:1587–1593 [View Article]
    [Google Scholar]
  15. van der Lee T, Testa A, Robold A, van’t Klooster J, Govers F. High-density genetic linkage maps of Phytophthora infestans reveal trisomic progeny and chromosomal rearrangements. Genetics 2004; 167:1643–1661 [View Article]
    [Google Scholar]
  16. Martinelli A, Hunt P, Fawcett R, Cravo PVL, Walliker D et al. An AFLP-based genetic linkage map of Plasmodium chabaudi chabaudi. Malar J 2005; 4:11 [View Article]
    [Google Scholar]
  17. Blake DP, Oakes R, Smith AL. A genetic linkage map for the apicomplexan protozoan parasite Eimeria maxima and comparison with Eimeria tenella. Int J Parasitol 2011; 41:263–270 [View Article]
    [Google Scholar]
  18. Katzer F, Lizundia R, Ngugi D, Blake D, McKeever D. Construction of a genetic map for Theileria parva: identification of hotspots of recombination. Int J Parasitol 2011 May; 41(6):669–675 [View Article]
    [Google Scholar]
  19. Li J, Pattaradilokrat S, Zhu F, Jiang H, Liu S et al. Linkage maps from multiple genetic crosses and loci linked to growth-related virulent phenotype in Plasmodium yoelii. Proc Natl Acad Sci 2011; 108:E374–82 [View Article]
    [Google Scholar]
  20. Jiang H, Li N, Gopalan V, Zilversmit MM, Varma S et al. High recombination rates and hotspots in a Plasmodium falciparum genetic cross. Genome Biol 2011; 12:R33 [View Article]
    [Google Scholar]
  21. Heesch S, Cho GY, Peters AF, Le Corguillé G, Falentin C et al. A sequence-tagged genetic map for the brown alga Ectocarpus siliculosus provides large-scale assembly of the genome sequence. New Phytol 2010; 188:42–51 [View Article]
    [Google Scholar]
  22. Shan T, Pang S, Li J, Li X, Su L. Construction of a high-density genetic map and mapping of a sex-linked locus for the brown alga Undaria pinnatifida (Phaeophyceae) based on large scale marker development by specific length amplified fragment (SLAF) sequencing. BMC Genomics 2015; 16:902 [View Article]
    [Google Scholar]
  23. Zhang N, Zhang L, Tao Y, Guo L, Sun J et al. Construction of a high density SNP linkage map of kelp (Saccharina japonica) by sequencing Taq I site associated DNA and mapping of a sex determining locus. BMC Genomics 2015; 16:189 [View Article]
    [Google Scholar]
  24. Vales MI, Schön CC, Capettini F, Chen XM, Corey AE et al. Effect of population size on the estimation of QTL: a test using resistance to barley stripe rust. Theor Appl Genet 2005; 111:1260–1270 [View Article]
    [Google Scholar]
  25. Bachvaroff TR, Place AR. From stop to start: tandem gene arrangement, copy number and trans-splicing sites in the dinoflagellate Amphidinium carterae. PLoS ONE 2008; 3:e2929 [View Article]
    [Google Scholar]
  26. Rizzo PJ. Those amazing dinoflagellate chromosomes. Cell Res 2003; 13:215–217 [View Article]
    [Google Scholar]
  27. Livolant F, Bouligand Y. New observations on the twisted arrangement of Dinoflagellate chromosomes. Chromosoma 1978; 68:21–44 [View Article]
    [Google Scholar]
  28. Rill RL, Livolant F, Aldrich HC, Davidson MW. Electron microscopy of liquid crystalline DNA: direct evidence for cholesteric-like organization of DNA in dinoflagellate chromosomes. Chromosoma 1989; 98:280–286 [View Article]
    [Google Scholar]
  29. Johnson JG, Morey JS, Neely MG, Ryan JC, Van Dolah FM. Transcriptome remodeling associated with chronological aging in the dinoflagellate, Karenia brevis. Mar Genomics 2012; 5:15–25 [View Article]
    [Google Scholar]
  30. Erdner DL, Anderson DM. Global transcriptional profiling of the toxic dinoflagellate Alexandrium fundyense using massively parallel signature sequencing. BMC Genomics 2006; 7:88 [View Article]
    [Google Scholar]
  31. Moustafa A, Evans AN, Kulis DM, Hackett JD, Erdner DL et al. Transcriptome profiling of a toxic dinoflagellate reveals a gene-rich protist and a potential impact on gene expression due to bacterial presence. aziz RK, editor. PLoS ONE 2010; 5:e9688 [View Article]
    [Google Scholar]
  32. Lin S. Genomic understanding of dinoflagellates. Res Microbiol 2011; 162:551–569 [View Article]
    [Google Scholar]
  33. Seveno J, Even Y, Le Gac M. Strong constitutive expression divergence among strains but no evidence of differential expression associated with sexual reproduction in Alexandrium minutum. Harmful Algae 2020; 100:101940 [View Article]
    [Google Scholar]
  34. Zhang H, Hou Y, Miranda L, Campbell DA, Sturm NR et al. Spliced leader RNA trans-splicing in dinoflagellates. Proc Natl Acad Sci 2007; 104:4618–4623 [View Article]
    [Google Scholar]
  35. Lidie KB, van Dolah FM. Spliced leader RNA-mediated trans-splicing in a dinoflagellate, Karenia brevis. J Eukaryot Microbiol 2007; 54:427–435 [View Article]
    [Google Scholar]
  36. Hou Y, Lin S. Distinct gene number-genome size relationships for eukaryotes and non-eukaryotes: gene content estimation for dinoflagellate genomes. PLoS ONE 2009; 4:e6978 [View Article]
    [Google Scholar]
  37. Shoguchi E, Shinzato C, Kawashima T, Gyoja F, Mungpakdee S et al. Draft assembly of the Symbiodinium minutum nuclear genome reveals dinoflagellate gene structure. Curr Biol 2013; 23:1399–1408 [View Article]
    [Google Scholar]
  38. Stephens TG, González-Pech RA, Cheng Y, Mohamed AR, Burt DW et al. Genomes of the dinoflagellate Polarella glacialis encode tandemly repeated single-exon genes with adaptive functions. BMC Biol 2020; 18:56 [View Article]
    [Google Scholar]
  39. Anderson DM, Alpermann TJ, Cembella AD, Collos Y, Masseret E et al. The globally distributed genus Alexandrium: multifaceted roles in marine ecosystems and impacts on human health. Harmful Algae 2012; 14:10–35 [View Article] [PubMed]
    [Google Scholar]
  40. Shin HH, Li Z, Réveillon D, Rovillon G-A, Mertens KN et al. Centrodinium punctatum (Dinophyceae) produces significant levels of saxitoxin and related analogs. Harmful Algae 2020; 100:101923 [View Article]
    [Google Scholar]
  41. Wiese M, D’Agostino PM, Mihali TK, Moffitt MC, Neilan BA. Neurotoxic alkaloids: saxitoxin and its analogs. Mar Drugs 2010; 8:2185–2211 [View Article]
    [Google Scholar]
  42. Shimizu Y. Microalgal metabolites. Chem Rev 1993; 93:1685–1698 [View Article]
    [Google Scholar]
  43. Kellmann R, Mihali TK, Jeon YJ, Pickford R, Pomati F et al. Biosynthetic intermediate analysis and functional homology reveal a saxitoxin gene cluster in cyanobacteria. Appl Environ Microbiol 2008; 74:4044–4053 [View Article]
    [Google Scholar]
  44. Tsuchiya S, Cho Y, Konoki K, Nagasawa K, Oshima Y et al. Synthesis and identification of proposed biosynthetic intermediates of saxitoxin in the cyanobacterium Anabaena circinalis (TA04) and the dinoflagellate Alexandrium tamarense (Axat-2). Org Biomol Chem 2014; 12:3016–3020 [View Article] [PubMed]
    [Google Scholar]
  45. Tsuchiya S, Cho Y, Konoki K, Nagasawa K, Oshima Y et al. Biosynthetic route towards saxitoxin and shunt pathway. Sci Rep 2016; 6:20340 [View Article]
    [Google Scholar]
  46. Cho Y, Tsuchiya S, Yoshioka R, Omura T, Konoki K et al. Column switching combined with hydrophilic interaction chromatography-tandem mass spectrometry for the analysis of saxitoxin analogues, and their biosynthetic intermediates in dinoflagellates. J Chromatogr A 2016; 1474:109–120 [View Article]
    [Google Scholar]
  47. Geffroy S, Lechat MM, Le Gac M, Rovillon GA, Marie D et al. From the sxtA4 gene to saxitoxin production: what controls the variability among Alexandrium minutum and Alexandrium pacificum strains?. Front Microbiol 2021; 12: [View Article]
    [Google Scholar]
  48. D’Agostino VC, Krock B, Degrati M, Sastre V, Santinelli N et al. Occurrence of toxigenic microalgal species and phycotoxin accumulation in mesozooplankton in Northern Patagonian Gulfs, Argentina. Environ Toxicol Chem 2019; 38:2209–2223 [View Article]
    [Google Scholar]
  49. Kellmann R, Mihali TK, Michali TK, Neilan BA, Neilan BA. Identification of a saxitoxin biosynthesis gene with a history of frequent horizontal gene transfers. J Mol Evol 2008; 67:526–538 [View Article]
    [Google Scholar]
  50. Mihali TK, Kellmann R, Neilan BA. Characterisation of the paralytic shellfish toxin biosynthesis gene clusters in Anabaena circinalis AWQC131C and Aphanizomenon sp. NH-5. BMC Biochem 2009; 10:8 [View Article]
    [Google Scholar]
  51. Mihali TK, Carmichael WW, Neilan BA. A putative gene cluster from a Lyngbya wollei bloom that encodes paralytic shellfish toxin biosynthesis. In Hofmann A. eds PLoS ONE vol 6 2011 p e14657 [View Article]
    [Google Scholar]
  52. Hackett JD, Wisecaver JH, Brosnahan ML, Kulis DM, Anderson DM et al. Evolution of saxitoxin synthesis in cyanobacteria and dinoflagellates. Mol Biol Evol 2013; 30:70–78 [View Article]
    [Google Scholar]
  53. Stüken A, Orr RJS, Kellmann R, Murray SA, Neilan BA et al. Discovery of nuclear-encoded genes for the neurotoxin saxitoxin in dinoflagellates. PLoS ONE 2011; 6:e20096 [View Article]
    [Google Scholar]
  54. Orr RJS, Stüken A, Murray SA, Jakobsen KS. Evolutionary acquisition and loss of saxitoxin biosynthesis in dinoflagellates: the second “core” gene, sxtG. Appl Environ Microbiol 2013; 79:2128–2136 [View Article]
    [Google Scholar]
  55. Perini F, Galluzzi L, Dell’Aversano C, Iacovo ED, Tartaglione L et al. SxtA and sxtG gene expression and toxin production in the Mediterranean Alexandrium minutum (Dinophyceae). Mar Drugs 2014; 12:5258–5276 [View Article]
    [Google Scholar]
  56. Murray SA, Diwan R, Orr RJS, Kohli GS, John U. Gene duplication, loss and selection in the evolution of saxitoxin biosynthesis in alveolates. Mol Phylogenet Evol 2015; 92:165–180 [View Article]
    [Google Scholar]
  57. Li Z, Mertens KN, Nézan E, Chomérat N, Bilien G et al. Discovery of a new clade nested within the genus Alexandrium (Dinophyceae): morpho-molecular characterization of Centrodinium punctatum (Cleve) F.J.R. Taylor. Protist 2019; 170:168–186 [View Article]
    [Google Scholar]
  58. Nguyen-Ngoc L. An autecological study of the potentially toxic dinoflagellate Alexandrium affine isolated from Vietnamese waters. Harmful Algae 2004; 3:117–129 [View Article]
    [Google Scholar]
  59. Chun SW, Hinze ME, Skiba MA, Narayan ARH. Chemistry of a unique polyketide-like synthase. J Am Chem Soc 2018; 140:2430–2433 [View Article]
    [Google Scholar]
  60. Lukowski AL, Ellinwood DC, Hinze ME, DeLuca RJ, Du Bois J et al. C-H hydroxylation in paralytic shellfish toxin biosynthesis. J Am Chem Soc 2018; 140:11863–11869 [View Article]
    [Google Scholar]
  61. Lukowski AL, Denomme N, Hinze ME, Hall S, Isom LL et al. Biocatalytic detoxification of paralytic shellfish toxins. ACS Chem Biol 2019; 14:941–948 [View Article]
    [Google Scholar]
  62. Soeriyadi AH, Mazmouz R, Pickford R, Al-Sinawi B, Kellmann R et al. Heterologous expression of an unusual ketosynthase, SxtA, leads to production of saxitoxin intermediates in Escherichia coli. Chembiochem 2021; 22:845–849 [View Article]
    [Google Scholar]
  63. Sako Y, Kim CH, Ishida Y. Mendelian inheritance of paralytic shellfish poisoning toxin in the marine dinoflagellate Alexandrium catenella. Biosci Biotechnol Biochem 1992; 56:692–694 [View Article]
    [Google Scholar]
  64. Le Gac M, Metegnier G, Chomérat N, Malestroit P, Quéré J et al. Evolutionary processes and cellular functions underlying divergence in Alexandrium minutum. Mol Ecol 2016; 25:5129–5143 [View Article]
    [Google Scholar]
  65. Figueroa RI, Garcés E, Bravo I. Comparative study of the life cycles of Alexandrium tamutum and Alexandrium minutum (gonyaulacales, dinophyceae) in culture 1. J Phycol 2007; 43(5):1039–1053
    [Google Scholar]
  66. Anderson DM. Physiology and bloom dynamics of toxic Alexandrium species, with emphasis on life cycle transitions. In Anderson DM, Cembella AD, Hallegraeff GM. eds The Physiological Ecology of Harmful Algal Blooms Heidelberg, Germany: Springer-Verlag; 1998 pp 29–48
    [Google Scholar]
  67. Keller MD, Selvin RC, Claus W, Guillard RRL. Media for the culture of oceanic ultraphytoplankton. J Phycol 1987; 23:633–638 [View Article]
    [Google Scholar]
  68. Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 2014; 30:2114–2120 [View Article]
    [Google Scholar]
  69. Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 2009; 25:1754–1760 [View Article]
    [Google Scholar]
  70. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J et al. The sequence alignment/map format and SAMtools. Bioinformatics 2009; 25:2078–2079 [View Article]
    [Google Scholar]
  71. Garrison E, Marth G. Haplotype-based variant detection from short-read sequencing arXiv:12073907 [q-bio] [Internet]. n.d http://arxiv.org/abs/1207.3907 accessed 20 July 2012
  72. Quinlan AR, Hall IM. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 2010; 26:841–842 [View Article]
    [Google Scholar]
  73. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol 1990; 215:403–410 [View Article]
    [Google Scholar]
  74. Haas B, Papanicolaou A. TransDecoder (find coding regions within transcripts) [Internet]. Available from 2016 https://github.com/TransDecoder/TransDecoder/wiki
    [Google Scholar]
  75. Mistry J, Chuguransky S, Williams L, Qureshi M, Salazar GA et al. Pfam: the protein families database in 2021. Nucleic Acids Res 2021; 49:D412–D419 [View Article]
    [Google Scholar]
  76. Eddy SR. Accelerated profile HMM searches. PLoS Comput Biol 2011; 7:e1002195 [View Article]
    [Google Scholar]
  77. Taylor J, Butler D. R package asmap: efficient genetic linkage map construction and diagnosis. J Stat Soft 2017; 79: [View Article]
    [Google Scholar]
  78. Team RC. R: A language and environment for statistical computingg [Internet]. Available from 2020 https://www.R-project.org/
    [Google Scholar]
  79. Team Rs. RStudio: Integrated Development for R [Internet]. Boston, MA: RStudio, PBC; 2019 http://www.rstudio.com/
  80. Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 2014; 15:550 [View Article]
    [Google Scholar]
  81. Shabalin AA. Matrix eQTL: ultra fast eQTL analysis via large matrix operations. Bioinformatics 2012; 28:1353–1358 [View Article]
    [Google Scholar]
  82. Ye N, Zhang X, Miao M, Fan X, Zheng Y. Saccharina genomes provide novel insight into kelp biology. Nat Commun 2015; 6:6986 [View Article]
    [Google Scholar]
  83. Hackett JD, Anderson DM, Erdner DL, Bhattacharya D. Dinoflagellates: a remarkable evolutionary experiment. Am J Bot 2004; 91:1523–1534 [View Article]
    [Google Scholar]
  84. Траспов АА, Костюнина ОВ, Белоус АА, Карпушкина ТВ, Свеженцева НА et al. Whole-genome association studies of distribution of developmental abnormalities and other breeding-valuable qualitative traits in offspring of the Russian large-white boars. Vavilovskii Zhurnal Genet Selektsii 2020; 24:185–190 [View Article]
    [Google Scholar]
  85. Cembella AD, Sullivan JJ, Boyer GL, Taylor FJR, Andersen RJ. Variation in paralytic shellfish toxin composition within the Protogonyaulax tamaronsis/catenella species complex; red tide dinoflagellates. Biochemical Systematics and Ecology 1987; 15:171–186 [View Article]
    [Google Scholar]
  86. Boyer GL, Sullivan JJ, Andersen RJ, Taylor FJR, Harrison PJ et al. Use of high-performance liquid chromatography to investigate the production of paralytic shellfish toxins by Protogonyaulax spp. in culture. Marine Biology 1986; 93:361–369 [View Article]
    [Google Scholar]
  87. Oshima Y, Blackburn SI, Hallegraeff GM. Comparative study on paralytic shellfish toxin profiles of the dinoflagellate Gymnodinium catenatum from three different countries. Marine Biology 1993; 116:471–476 [View Article]
    [Google Scholar]
  88. Parkhill JP, Cembella AD. Effects of salinity, light and inorganic nitrogen on growth and toxigenicity of the marine dinoflagellate Alexandrium tamarense from northeastern Canada. J Plankton Res 1999; 21:939–955 [View Article]
    [Google Scholar]
  89. Jean N, Perié L, Dumont E, Bertheau L, Balliau T et al. Metal stresses modify soluble proteomes and toxin profiles in two Mediterranean strains of the distributed dinoflagellate Alexandrium pacificum. Sci Total Environ 2022; 818:151680 [View Article]
    [Google Scholar]
  90. Hansen G, Daugbjerg N, Franco JM. Morphology, toxin composition and LSU rDNA phylogeny of Alexandrium minutum (Dinophyceae) from Denmark, with some morphological observations on other European strains. Harmful Algae 2003; 2:317–335 [View Article]
    [Google Scholar]
  91. Grzebyk D. Effects of salinity and two coastal waters on the growth and toxin content of the dinoflagellate Alexandrium minutum. J Plankton Res 2003; 25:1185–1199 [View Article]
    [Google Scholar]
  92. Hamasaki K. Variability in toxicity of the Ddinoflagellate Alexandrium tamarense isolated from Hiroshima Bay, Western Japan, as a reflection of changing environmental conditions. J Plankton Res 2001; 23:271–278 [View Article]
    [Google Scholar]
  93. Lee TCH, Kwok OT, Ho KC, Lee FWF. Effects of different nitrate and phosphate concentrations on the growth and toxin production of an Alexandrium tamarense strain collected from Drake Passage. Mar Environ Res 2012; 81:62–69 [View Article] [PubMed]
    [Google Scholar]
  94. Selander E, Kubanek J, Hamberg M, Andersson MX, Cervin G et al. Predator lipids induce paralytic shellfish toxins in bloom-forming algae. Proc Natl Acad Sci 2015; 112:6395–6400 [View Article]
    [Google Scholar]
  95. Martins CA, Kulis D, Franca S, Anderson DM. The loss of PSP toxin production in a formerly toxic Alexandrium lusitanicum clone. Toxicon 2004; 43:195–205 [View Article]
    [Google Scholar]
  96. Hii KS, Lim PT, Kon NF, Takata Y, Usup G et al. Physiological and transcriptional responses to inorganic nutrition in a tropical Pacific strain of Alexandrium minutum: Implications for the saxitoxin genes and toxin production. Harmful Algae 2016; 56:9–21 [View Article]
    [Google Scholar]
  97. Zhang SF, Zhang Y, Lin L, Wang DZ. iTRAQ-based quantitative proteomic analysis of a toxigenic dinoflagellate Alexandrium catenella at different stages of toxin biosynthesis during the cell cycle. Mar Drugs 2018; 16:E491 [View Article]
    [Google Scholar]
  98. Verma A, Barua A, Ruvindy R, Savela H, Ajani PA et al. The genetic basis of toxin biosynthesis in dinoflagellates. Microorganisms 2019; 7:E222 [View Article]
    [Google Scholar]
  99. Murray SA, Wiese M, Stüken A, Brett S, Kellmann R et al. sxtA-based quantitative molecular assay to identify saxitoxin-producing harmful algal blooms in marine waters. Appl Environ Microbiol 2011; 77:7050–7057 [View Article]
    [Google Scholar]
  100. Zhang Y, Zhang SF, Lin L, Wang DZ. Comparative transcriptome analysis of a toxin-producing dinoflagellate Alexandrium catenella and its non-toxic mutant. Mar Drugs 2014; 12:5698–5718 [View Article]
    [Google Scholar]
  101. Wiese M, Murray SA, Alvin A, Neilan BA. Gene expression and molecular evolution of sxtA4 in a saxitoxin producing dinoflagellate Alexandrium catenella. Toxicon 2014; 92:102–112 [View Article] [PubMed]
    [Google Scholar]
  102. Omura T, Onodera H, Ishimaru T, Oshima Y. Non-toxic mutational subclones in the paralytic shellfish poisoning causative dinoflagellates, Alexandrium spp. In La Mer 2003 pp 86–93
    [Google Scholar]
  103. Cho Y, Hiramatsu K, Ogawa M, Omura T, Ishimaru T et al. Non-toxic and toxic subclones obtained from a toxic clonal culture of Alexandrium tamarense (Dinophyceae): Toxicity and molecular biological feature. Harmful Algae 2008; 7:740–751 [View Article]
    [Google Scholar]
  104. Cho Y, Tsuchiya S, Yoshioka R, Omura T, Konoki K et al. The presence of 12β-deoxydecarbamoylsaxitoxin in the Japanese toxic dinoflagellate Alexandrium determined by simultaneous analysis for paralytic shellfish toxins using HILIC-LC–MS/MS. Harmful Algae 2015; 49:58–67 [View Article]
    [Google Scholar]
  105. Cho Y, Hidema S, Omura T, Koike K, Koike K et al. SxtA localizes to chloroplasts and changes to its 3’UTR may reduce toxin biosynthesis in non-toxic Alexandrium catenella (Group I). Harmful Algae 2021; 101:101972 [View Article]
    [Google Scholar]
  106. Thi Nhu Bui Q, Kim H, Wang H, Ki JS. Unveiling the genomic structures and evolutionary events of the saxitoxin biosynthetic gene sxtA in the marine toxic dinoflagellate Alexandrium. Mol Phylogenet Evol 2022; 168:107417 [View Article]
    [Google Scholar]
  107. Yoshida T, Sako Y, Uchida A, Kakutani T, Arakawa O et al. Purification and characterization of sulfotransferase specific to O-22 of 11-hydroxy saxitoxin from the toxic dinoflagellate Gymnodinium catenatum (dinophyceae). Fisheries Sci 2002; 68:634–642 [View Article]
    [Google Scholar]
  108. Klemenčič M, Funk C. Structural and functional diversity of caspase homologues in non-metazoan organisms. Protoplasma 2018; 255:387–397 [View Article]
    [Google Scholar]
  109. Jauzein C, Erdner DL. Stress-related responses in Alexandrium tamarense cells exposed to environmental changes. J Eukaryot Microbiol 2013; 60:526–538 [View Article]
    [Google Scholar]
  110. Asplund-Samuelsson J, Sundh J, Dupont CL, Allen AE, McCrow JP et al. Diversity and expression of bacterial metacaspases in an aquatic ecosystem. Front Microbiol 2016; 7:1043 [View Article]
    [Google Scholar]
  111. Cho Y, Tsuchiya S, Omura T, Koike K, Oikawa H et al. Metabolomic study of saxitoxin analogues and biosynthetic intermediates in dinoflagellates using 15N-labelled sodium nitrate as a nitrogen source. Sci Rep 2019; 9:11 [View Article]
    [Google Scholar]
/content/journal/mgen/10.1099/mgen.0.000879
Loading
/content/journal/mgen/10.1099/mgen.0.000879
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error