1887

Abstract

Visualization is frequently used to aid our interpretation of complex datasets. Within microbial genomics, visualizing the relationships between multiple genomes as a tree provides a framework onto which associated data (geographical, temporal, phenotypic and epidemiological) are added to generate hypotheses and to explore the dynamics of the system under investigation. Selected static images are then used within publications to highlight the key findings to a wider audience. However, these images are a very inadequate way of exploring and interpreting the richness of the data. There is, therefore, a need for flexible, interactive software that presents the population genomic outputs and associated data in a user-friendly manner for a wide range of end users, from trained bioinformaticians to front-line epidemiologists and health workers. Here, we present Microreact, a web application for the easy visualization of datasets consisting of any combination of trees, geographical, temporal and associated metadata. Data files can be uploaded to Microreact directly via the web browser or by linking to their location (e.g. from Google Drive/Dropbox or via API), and an integrated visualization via trees, maps, timelines and tables provides interactive querying of the data. The visualization can be shared as a permanent web link among collaborators, or embedded within publications to enable readers to explore and download the data. Microreact can act as an end point for any tool or bioinformatic pipeline that ultimately generates a tree, and provides a simple, yet powerful, visualization method that will aid research and discovery and the open sharing of datasets.

Loading

Article metrics loading...

/content/journal/mgen/10.1099/mgen.0.000093
2016-11-30
2019-09-21
Loading full text...

Full text loading...

/deliver/fulltext/mgen/2/11/mgen000093.html?itemId=/content/journal/mgen/10.1099/mgen.0.000093&mimeType=html&fmt=ahah

References

  1. Aanensen D. M., Feil E. J., Holden M. T., Dordel J., Yeats C. A., Fedosejev A., Goater R., Castillo-Ramírez S., Corander J. et al. 2016; Whole-genome sequencing for routine pathogen surveillance in public health: a population snapshot of invasive Staphylococcus aureus in Europe. MBio7:e00444-16 [CrossRef][PubMed]
    [Google Scholar]
  2. Cochrane G., Karsch-Mizrachi I., Takagi T.. International Nucleotide Sequence Database Collaboration 2016; The International Nucleotide Sequence Database Collaboration. Nucleic Acids Res44:D48–D50 [CrossRef][PubMed]
    [Google Scholar]
  3. Crellen T., Allan F., David S., Durrant C., Huckvale T., Holroyd N., Emery A. M., Rollinson D., Aanensen D. M. et al. 2016; Whole genome resequencing of the human parasite Schistosoma mansoni reveals population history and effects of selection. Sci Rep6:20954 [CrossRef][PubMed]
    [Google Scholar]
  4. Croucher N. J., Finkelstein J. A., Pelton S. I., Parkhill J., Bentley S. D., Lipsitch M., Hanage W. P.. 2015; Population genomic datasets describing the post-vaccine evolutionary epidemiology of Streptococcus pneumoniae. Sci Data2:150058 [CrossRef][PubMed]
    [Google Scholar]
  5. Currie T. E., Meade A., Guillon M., Mace R.. 2013; Cultural phylogeography of the Bantu languages of sub-Saharan Africa. Proc Biol Sci280:20130695 [CrossRef][PubMed]
    [Google Scholar]
  6. Faria N. R., Azevedo R. S., Kraemer M. U., Souza R., Cunha M. S., Hill S. C., Thézé J., Bonsall M. B., Bowden T. A. et al. 2016; Zika virus in the Americas: early epidemiological and genetic findings. Science352:345–349 [CrossRef][PubMed]
    [Google Scholar]
  7. Gardy J., Loman N. J., Rambaut A.. 2015; Real-time digital pathogen surveillance – the time is now. Genome Biol16:155 [CrossRef][PubMed]
    [Google Scholar]
  8. Gibson R., Alako B., Amid C., Cerdeño-Tárraga A., Cleland I., Goodgame N., Ten Hoopen P., Jayathilaka S., Kay S. et al. 2016; Biocuration of functional annotation at the European nucleotide archive. Nucleic Acids Res44:D58–D66 [CrossRef][PubMed]
    [Google Scholar]
  9. Goodwin S., McPherson J. D., McCombie W. R.. 2016; Coming of age: ten years of next-generation sequencing technologies. Nat Rev Genet17:333–351 [CrossRef][PubMed]
    [Google Scholar]
  10. Hallast P., Batini C., Zadik D., Maisano Delser P., Wetton J. H., Arroyo-Pardo E., Cavalleri G. L., de Knijff P., Destro Bisol G. et al. 2015; The Y-chromosome tree bursts into leaf: 13 000 high-confidence SNPs covering the majority of known clades. Mol Biol Evol32:661–673 [CrossRef][PubMed]
    [Google Scholar]
  11. Imamura H., Downing T., Van den Broeck F., Sanders M. J., Rijal S., Sundar S., Mannaert A., Vanaerschot M., Berg M. et al. 2016; Evolutionary genomics of epidemic visceral leishmaniasis in the Indian subcontinent. Elife5:e12613 [CrossRef][PubMed]
    [Google Scholar]
  12. Knetsch C. W., Connor T. R., Mutreja A., van Dorp S. M., Sanders I. M., Browne H. P., Harris D., Lipman L., Keessen E. C. et al. 2014; Whole genome sequencing reveals potential spread of Clostridium difficile between humans and farm animals in the Netherlands, 2002 to 2011. Euro Surveill19:20954 [CrossRef][PubMed]
    [Google Scholar]
  13. Njamkepo E., Fawal N., Tran-Dien A., Hawkey J., Strockbine N., Jenkins C., Talukder K. A., Bercion R., Kuleshov K. et al. 2016; Global phylogeography and evolutionary history of Shigella dysenteriae type 1. Nat Microbiol1:16027 [CrossRef][PubMed]
    [Google Scholar]
  14. Page A. J., Cummins C. A., Hunt M., Wong V. K., Reuter S., Holden M. T., Fookes M., Falush D., Keane J. A., Parkhill J.. 2015; Roary: rapid large-scale prokaryote pan genome analysis. Bioinformatics31:3691–3693 [CrossRef][PubMed]
    [Google Scholar]
  15. Quick J., Loman N. J., Duraffour S., Simpson J. T., Severi E., Cowley L., Bore J. A., Koundouno R., Dudas G. et al. 2016; Real-time, portable genome sequencing for Ebola surveillance. Nature530:228–232 [CrossRef][PubMed]
    [Google Scholar]
  16. Reuter S., Corander J., de Been M., Harris S., Cheng L., Hall M., Thomson N. R., McNally A.. 2015; Directional gene flow and ecological separation in Yersinia enterocolitica. Microbial Genomics1:3 [CrossRef]
    [Google Scholar]
  17. Vernikos G., Medini D., Riley D. R., Tettelin H.. 2015; Ten years of pan-genome analyses. Curr Opin Microbiol23:148–154 [CrossRef][PubMed]
    [Google Scholar]
  18. Wong V. K., Baker S., Pickard D. J., Parkhill J., Page A. J., Feasey N. A., Kingsley R. A., Thomson N. R., Keane J. A. et al. 2015; Phylogeographical analysis of the dominant multidrug-resistant H58 clade of Salmonella Typhi identifies inter- and intracontinental transmission events. Nat Genet47:632–639 [CrossRef][PubMed]
    [Google Scholar]
  19. Xiao J., Zhang Z., Wu J., Yu J.. 2015; A brief review of software tools for pangenomics. Genomics Proteomics Bioinformatics13:73–76 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/mgen/10.1099/mgen.0.000093
Loading
/content/journal/mgen/10.1099/mgen.0.000093
Loading

Data & Media loading...

Supplementary File 1

WORD

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error