1887

Abstract

bloodstream infections are typically attributed to a limited number of lineages that carry virulence factors associated with invasiveness. In Nigeria, the identity of circulating clones is largely unknown and surveillance of their antimicrobial resistance has been limited. We verified and whole-genome sequenced 68 2016–2018 bloodstream isolates from three sentinel sites in South-Western Nigeria and susceptibility tested 67 of them. Resistance to antimicrobials commonly used in Nigeria was high, with 67 (100 %), 62 (92.5 %), 53 (79.1 %) and 37 (55.2 %) showing resistance to trimethoprim, ampicillin, ciprofloxacin and aminoglycosides, respectively. Thirty-five (51 %) isolates carried extended-spectrum β-lactamase genes and 32 (91 %) of these were multidrug resistant. All the isolates were susceptible to carbapenems and colistin. The strain set included globally disseminated high-risk clones from sequence type (ST)12 (2), ST131 (12) and ST648 (4). Twenty-three (33.8 %) of the isolates clustered within two clades. The first of these consisted of ST131 strains, comprising O16:H5 and O25:H4 sub-lineages. The second was an ST10–ST167 complex clade comprising strains carrying O-antigen and capsular genes of likely origin, identical to those of avian pathogenic Sanji, and serotyped as O89, O101 or ONovel32, depending on the tool used. Four temporally associated ST90 strains from one sentinel were closely related enough to suggest that at least some of them represented a retrospectively detected outbreak cluster. Our data implicate a broad repertoire of isolates associated with bloodstream infections in South-West Nigeria. Continued genomic surveillance is valuable for tracking clones of importance and for outbreak identification.

Funding
This study was supported by the:
  • Bill and Melinda Gates Foundation (Award INV-036234)
    • Principle Award Recipient: IrukaN Okeke
  • Medical Research Council (Award MR/L00464X/1)
    • Principle Award Recipient: IrukaN Okeke
  • National Institute for Health Research (Award 16_136_111)
    • Principle Award Recipient: DavidM Aanensen
  • This is an open-access article distributed under the terms of the Creative Commons Attribution License.
Loading

Article metrics loading...

/content/journal/mgen/10.1099/mgen.0.000863
2022-12-16
2024-12-05
Loading full text...

Full text loading...

/deliver/fulltext/mgen/8/12/mgen000863.html?itemId=/content/journal/mgen/10.1099/mgen.0.000863&mimeType=html&fmt=ahah

References

  1. de Kraker MEA, Jarlier V, Monen JCM, Heuer OE, van de Sande N et al. The changing epidemiology of bacteraemias in Europe: trends from the European antimicrobial resistance surveillance system. Clin Microbiol Infect 2013; 19:860–868 [View Article]
    [Google Scholar]
  2. Foxman B. The epidemiology of urinary tract infection. Nat Rev Urol 2010; 7:653–660 [View Article] [PubMed]
    [Google Scholar]
  3. Manges AR, Geum HM, Guo A, Edens TJ, Fibke CD et al. Global extraintestinal pathogenic Escherichia coli (ExPEC) lineages. Clin Microbiol Rev 2019; 32:e00135-18 [View Article]
    [Google Scholar]
  4. Johnson JR, Russo TA. Molecular epidemiology of extraintestinal pathogenic Escherichia coli. EcoSal Plus 2018; 8:ESP-0004-2017 [View Article]
    [Google Scholar]
  5. Sarowska J, Futoma-Koloch B, Jama-Kmiecik A, Frej-Madrzak M, Ksiazczyk M et al. Virulence factors, prevalence and potential transmission of extraintestinal pathogenic Escherichia coli isolated from different sources: recent reports. Gut Pathog 2019; 11:10 [View Article] [PubMed]
    [Google Scholar]
  6. McNally A, Kallonen T, Connor C, Abudahab K, Aanensen DM et al. Diversification of colonization factors in a multidrug-resistant Escherichia coli lineage evolving under negative frequency-dependent selection. mBio 2019; 10:e00644-19 [View Article]
    [Google Scholar]
  7. Chattaway MA, Aboderin AO, Fashae K, Okoro CK, Opintan JA et al. Fluoroquinolone-resistant enteric bacteria in sub-Saharan Africa: clones, implications and research needs. Front Microbiol 2016; 7:558 [View Article]
    [Google Scholar]
  8. Alonso CA, Zarazaga M, Ben Sallem R, Jouini A, Ben Slama K et al. Antibiotic resistance in Escherichia coli in husbandry animals: the African perspective. Lett Appl Microbiol 2017; 64:318–334 [View Article] [PubMed]
    [Google Scholar]
  9. Khairy RM, Mohamed ES, Abdel Ghany HM, Abdelrahim SS. Phylogenic classification and virulence genes profiles of uropathogenic E. coli and diarrhegenic E. coli strains isolated from community acquired infections. PLoS One 2019; 14:e0222441 [View Article]
    [Google Scholar]
  10. Forson AO, Tsidi WB, Nana-Adjei D, Quarchie MN, Obeng-Nkrumah N. Escherichia coli bacteriuria in pregnant women in Ghana: antibiotic resistance patterns and virulence factors. BMC Res Notes 2018; 11:901 [View Article]
    [Google Scholar]
  11. Huynh B-T, Padget M, Garin B, Herindrainy P, Kermorvant-Duchemin E et al. Burden of bacterial resistance among neonatal infections in low income countries: how convincing is the epidemiological evidence?. BMC Infect Dis 2015; 15:127 [View Article]
    [Google Scholar]
  12. Seni J, Peirano G, Okon KO, Jibrin YB, Mohammed A et al. The population structure of clinical extra-intestinal Escherichia coli in a teaching hospital from Nigeria. Diagn Microbiol Infect Dis 2018; 92:46–49 [View Article] [PubMed]
    [Google Scholar]
  13. Okonko IO, Donbraye-Emmanuel OB, Ijandipe LA, Ogun AA, Adedeji AO et al. Antibiotics sensitivity and resistance patterns of uropathogens to nitrofurantoin and nalidixic acid in pregnant women with urinary tract infections in Ibadan, Nigeria. Middle-East J Sci Res 2009; 4:105–109
    [Google Scholar]
  14. Ogbolu DO, Piddock LJV, Webber MA. Opening Pandora’s box: high-level resistance to antibiotics of last resort in Gram-negative bacteria from Nigeria. J Glob Antimicrob Resist 2020; 21:211–217 [View Article]
    [Google Scholar]
  15. Duru C, Olanipekun G, Odili V, Kocmich N, Rezac A et al. Molecular characterization of invasive Enterobacteriaceae from pediatric patients in central and Northwestern Nigeria. PLoS One 2020; 15:e0230037 [View Article]
    [Google Scholar]
  16. Sands K, Carvalho MJ, Portal E, Thomson K, Dyer C et al. Characterization of antimicrobial-resistant Gram-negative bacteria that cause neonatal sepsis in seven low- and middle-income countries. Nat Microbiol 2021; 6:512–523 [View Article] [PubMed]
    [Google Scholar]
  17. CLSI Performance Standards for Antimicrobial Susceptibility Testing, a CLSI Supplement for Global Application, M100, 28th edn Wayne, PA: Clinical and Laboratory Standards Institute; 2020
    [Google Scholar]
  18. Berends MS, Luz CF, Friedrich AW, Sinha BNM, Albers CJ et al. AMR – an R package for working with antimicrobial resistance data. bioRxiv 2019810622
    [Google Scholar]
  19. Wakimoto N, Nishi J, Sheikh J, Nataro JP, Sarantuya J et al. Quantitative biofilm assay using a microtiter plate to screen for enteroaggregative Escherichia coli. Am J Trop Med Hyg 2004; 71:687–690 [View Article] [PubMed]
    [Google Scholar]
  20. Naves P, del Prado G, Huelves L, Gracia M, Ruiz V et al. Measurement of biofilm formation by clinical isolates of Escherichia coli is method-dependent. J Appl Microbiol 2008; 105:585–590 [View Article] [PubMed]
    [Google Scholar]
  21. Afolayan AO, Oaikhena AO, Aboderin AO, Olabisi OF, Amupitan AA et al. Clones and clusters of antimicrobial-resistant Klebsiella from Southwestern Nigeria. Clin Infect Dis 2021; 73:S308–S315 [View Article]
    [Google Scholar]
  22. Underwood A. GHRU (Genomic Surveillance of Antimicrobial Resistance) Retrospective 1 Bioinformatics Methods v.4; 2020 https://www.protocols.io/view/ghru-genomic-surveillance-of-antimicrobial-resista-bpn6mmhe accessed 9 January 2022
  23. Croucher NJ, Page AJ, Connor TR, Delaney AJ, Keane JA et al. Rapid phylogenetic analysis of large samples of recombinant bacterial whole genome sequences using Gubbins. Nucleic Acids Res 2015; 43:e15 [View Article]
    [Google Scholar]
  24. Argimón S, Abudahab K, Goater RJE, Fedosejev A, Bhai J et al. Microreact: visualizing and sharing data for genomic epidemiology and phylogeography. Microb Genom 2016; 2:e000093 [View Article]
    [Google Scholar]
  25. Letunic I, Bork P. Interactive Tree Of Life (iTOL) v5: an online tool for phylogenetic tree display and annotation. Nucleic Acids Res 2021; 49:W293–W296 [View Article]
    [Google Scholar]
  26. Inouye M, Dashnow H, Raven L-A, Schultz MB, Pope BJ et al. SRST2: Rapid genomic surveillance for public health and hospital microbiology labs. Genome Med 2014; 6:006627 [View Article] [PubMed]
    [Google Scholar]
  27. Ingle DJ, Levine MM, Kotloff KL, Holt KE, Robins-Browne RM. Dynamics of antimicrobial resistance in intestinal Escherichia coli from children in community settings in South Asia and sub-Saharan Africa. Nat Microbiol 2018; 3:1063–1073 [View Article]
    [Google Scholar]
  28. Conway JR, Lex A, Gehlenborg N. UpSetR: an R package for the visualization of intersecting sets and their properties. Bioinformatics 2017; 33:2938–2940 [View Article] [PubMed]
    [Google Scholar]
  29. Hunt M, Mather AE, Sánchez-Busó L, Page AJ, Parkhill J et al. ARIBA: rapid antimicrobial resistance genotyping directly from sequencing reads. Microb Genom 2017; 3:e000131 [View Article]
    [Google Scholar]
  30. Chen L, Yang J, Yu J, Yao Z, Sun L et al. VFDB: a reference database for bacterial virulence factors. Nucleic Acids Res 2005; 33:D325–D328 [View Article]
    [Google Scholar]
  31. Carattoli A, Zankari E, García-Fernández A, Voldby Larsen M, Lund O et al. In silico detection and typing of plasmids using PlasmidFinder and plasmid multilocus sequence typing. Antimicrob Agents Chemother 2014; 58:3895–3903 [View Article] [PubMed]
    [Google Scholar]
  32. Wirth T, Falush D, Lan R, Colles F, Mensa P et al. Sex and virulence in Escherichia coli: an evolutionary perspective. Mol Microbiol 2006; 60:1136–1151 [View Article] [PubMed]
    [Google Scholar]
  33. Clausen P, Aarestrup FM, Lund O. Rapid and precise alignment of raw reads against redundant databases with KMA. BMC Bioinformatics 2018; 19:307 [View Article]
    [Google Scholar]
  34. Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J et al. BLAST+: architecture and applications. BMC Bioinformatics 2009; 10:421 [View Article]
    [Google Scholar]
  35. Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 2018; 35:1547–1549 [View Article]
    [Google Scholar]
  36. Beghain J, Bridier-Nahmias A, Le Nagard H, Denamur E, Clermont O. ClermonTyping: an easy-to-use and accurate in silico method for Escherichia genus strain phylotyping. Microb Genom 2018; 4:000192 [View Article]
    [Google Scholar]
  37. Roer L, Tchesnokova V, Allesøe R, Muradova M, Chattopadhyay S et al. Development of a web tool for Escherichia coli subtyping based on fimH Alleles. J Clin Microbiol 2017; 55:2538–2543 [View Article]
    [Google Scholar]
  38. Kahlmeter G, Giske CG, Kirn TJ, Sharp SE. Point-counterpoint: differences between the European Committee on Antimicrobial Susceptibility Testing and Clinical and Laboratory Standards Institute recommendations for reporting antimicrobial susceptibility results. J Clin Microbiol 2019; 57:e01129-19 [View Article]
    [Google Scholar]
  39. Schwengers O, Jelonek L, Dieckmann MA, Beyvers S, Blom J et al. Bakta: rapid and standardized annotation of bacterial genomes via alignment-free sequence identification. Microb Genom 2021; 7:000685 [View Article]
    [Google Scholar]
  40. Rutherford K, Parkhill J, Crook J, Horsnell T, Rice P et al. Artemis: sequence visualization and annotation. Bioinformatics 2000; 16:944–945 [View Article] [PubMed]
    [Google Scholar]
  41. Carver TJ, Rutherford KM, Berriman M, Rajandream M-A, Barrell BG et al. ACT: the Artemis Comparison Tool. Bioinformatics 2005; 21:3422–3423 [View Article]
    [Google Scholar]
  42. Gilchrist CLM, Chooi Y-H. Clinker & clustermap.js: automatic generation of gene cluster comparison figures. Bioinformatics 2021; 37:2473–2475 [View Article] [PubMed]
    [Google Scholar]
  43. Arredondo-Alonso S, Rogers MRC, Braat JC, Verschuuren TD, Top J et al. Mmlplasmids: a user-friendly tool to predict plasmid- and chromosome-derived sequences for single species. Microb Genom 2018; 4:000224 [View Article]
    [Google Scholar]
  44. Roer L, Hansen F, Thomsen MCF, Knudsen JD, Hansen DS et al. WGS-based surveillance of third-generation cephalosporin-resistant Escherichia coli from bloodstream infections in Denmark. J Antimicrob Chemother 2017; 72:1922–1929 [View Article] [PubMed]
    [Google Scholar]
  45. Schürch AC, Arredondo-Alonso S, Willems RJL, Goering RV. Whole genome sequencing options for bacterial strain typing and epidemiologic analysis based on single nucleotide polymorphism versus gene-by-gene-based approaches. Clin Microbiol Infect 2018; 24:350–354 [View Article] [PubMed]
    [Google Scholar]
  46. Ludden C, Coll F, Gouliouris T, Restif O, Blane B et al. Defining nosocomial transmission of Escherichia coli and antimicrobial resistance genes: a genomic surveillance study. Lancet Microbe 2021; 2:e472–e480 [View Article]
    [Google Scholar]
  47. Ideses D, Gophna U, Paitan Y, Chaudhuri RR, Pallen MJ et al. A degenerate type III secretion system from septicemic Escherichia coli contributes to pathogenesis. J Bacteriol 2005; 187:8164–8171 [View Article] [PubMed]
    [Google Scholar]
  48. Schaufler K, Semmler T, Wieler LH, Trott DJ, Pitout J et al. Genomic and functional analysis of emerging virulent and multidrug-resistant Escherichia coli lineage sequence type 648. Antimicrob Agents Chemother 2019; 63:e00243-19 [View Article]
    [Google Scholar]
  49. Fang CT, Chuang YP, Shun CT, Chang SC, Wang JT. A novel virulence gene in Klebsiella pneumoniae strains causing primary liver abscess and septic metastatic complications. J Exp Med 2004; 199:697–705 [View Article]
    [Google Scholar]
  50. Touzé T, Tran AX, Hankins JV, Mengin-Lecreulx D, Trent MS. Periplasmic phosphorylation of lipid A is linked to the synthesis of undecaprenyl phosphate. Mol Microbiol 2008; 67:264–277 [View Article] [PubMed]
    [Google Scholar]
  51. Forde BM, Zowawi HM, Harris PNA, Roberts L, Ibrahim E et al. Discovery of mcr-1-mediated colistin resistance in a highly virulent Escherichia coli lineage. mSphere 2018; 3:e00486-18 [View Article]
    [Google Scholar]
  52. Yassine I, Lefèvre S, Hansen EE, Ruckly C, Carle I et al. Population structure analysis and laboratory monitoring of Shigella by core-genome multilocus sequence typing. Nat Commun 2022; 13:131 [View Article]
    [Google Scholar]
  53. Zeng X, Chi X, Ho BT, Moon D, Lambert C et al. Comparative genome analysis of an extensively drug-resistant isolate of avian sequence type 167 Escherichia coli strain Sanji with novel in silico serotype O89b:H9. mSystems 2019; 4:e00242-18 [View Article]
    [Google Scholar]
  54. Liu B, Furevi A, Perepelov AV, Guo X, Cao H et al. Structure and genetics of Escherichia coli O antigens. FEMS Microbiol Rev 2020; 44:655–683 [View Article]
    [Google Scholar]
  55. Hagiya H, Watanabe N, Maki M, Murase T, Otsuka F. Clinical utility of string test as a screening method for hypermucoviscosity-phenotype Klebsiella pneumoniae. Acute Med Surg 2014; 1:245–246 [View Article] [PubMed]
    [Google Scholar]
  56. Magiorakos A-P, Srinivasan A, Carey RB, Carmeli Y, Falagas ME et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect 2012; 18:268–281 [View Article] [PubMed]
    [Google Scholar]
  57. Kallonen T, Brodrick HJ, Harris SR, Corander J, Brown NM et al. Systematic longitudinal survey of invasive Escherichia coli in England demonstrates a stable population structure only transiently disturbed by the emergence of ST131. Genome Res 2017; 27:1437–1449 [View Article] [PubMed]
    [Google Scholar]
  58. Aboderin OA, Abdu A-R, Odetoyin BW, Lamikanra A. Antimicrobial resistance in Escherichia coli strains from urinary tract infections. J Natl Med Assoc 2009; 101:1268–1273 [View Article]
    [Google Scholar]
  59. Onanuga A, Mahindroo J, Singh S, Taneja N. Phenotypic and molecular characterization of antimicrobial resistant Escherichia coli from urinary tract infections in Port-Harcourt, Nigeria. Pan Afr Med J 2019; 34:144 [View Article]
    [Google Scholar]
  60. Tegha G, Ciccone EJ, Krysiak R, Kaphatika J, Chikaonda T et al. Genomic epidemiology of Escherichia coli isolates from a tertiary referral center in Lilongwe, Malawi. Microb Genom 2020; 7:000490 [View Article]
    [Google Scholar]
  61. Lim C, Takahashi E, Hongsuwan M, Wuthiekanun V, Thamlikitkul V et al. Epidemiology and burden of multidrug-resistant bacterial infection in a developing country. Elife 2016; 5:e18082 [View Article]
    [Google Scholar]
  62. Russo TA, Wenderoth S, Carlino UB, Merrick JM, Lesse AJ. Identification, genomic organization, and analysis of the group III capsular polysaccharide genes kpsD, kpsM, kpsT, and kpsE from an extraintestinal isolate of Escherichia coli (CP9, O4/K54/H5). J Bacteriol 1998; 180:338–349 [View Article] [PubMed]
    [Google Scholar]
  63. Nanayakkara BS, O’Brien CL, Gordon DM. Diversity and distribution of Klebsiella capsules in Escherichia coli. Environ Microbiol Rep 2019; 11:107–117 [View Article]
    [Google Scholar]
  64. Royer G, Darty MM, Clermont O, Condamine B, Laouenan C et al. Phylogroup stability contrasts with high within sequence type complex dynamics of Escherichia coli bloodstream infection isolates over a 12-year period. Genome Med 2021; 13:77 [View Article]
    [Google Scholar]
  65. Lamikanra A, Crowe JL, Lijek RS, Odetoyin BW, Wain J et al. Rapid evolution of fluoroquinolone-resistant Escherichia coli in Nigeria is temporally associated with fluoroquinolone use. BMC Infect Dis 2011; 11:312 [View Article]
    [Google Scholar]
  66. Musicha P, Cornick JE, Bar-Zeev N, French N, Masesa C et al. Trends in antimicrobial resistance in bloodstream infection isolates at a large urban hospital in Malawi (1998-2016): a surveillance study. Lancet Infect Dis 2017; 17:1042–1052 [View Article] [PubMed]
    [Google Scholar]
  67. Rawat D, Nair D. Extended-spectrum β-lactamases in Gram negative bacteria. J Glob Infect Dis 2010; 2:263–274 [View Article]
    [Google Scholar]
  68. Mitchell SL, Simner PJ. Next-generation sequencing in clinical microbiology: are we there yet?. Clin Lab Med 2019; 39:405–418 [View Article]
    [Google Scholar]
  69. Rossen JWA, Friedrich AW, Moran-Gilad J. ESCMID Study Group for Genomic and Molecular Diagnostics (ESGMD) Practical issues in implementing whole-genome-sequencing in routine diagnostic microbiology. Clin Microbiol Infect 2018; 24:355–360 [View Article] [PubMed]
    [Google Scholar]
  70. Borges CA, Tarlton NJ, Riley LW. Escherichia coli from commercial broiler and backyard chickens share sequence types, antimicrobial resistance profiles, and resistance genes with human extraintestinal pathogenic Escherichia coli. Foodborne Pathog Dis 2019; 16:813–822 [View Article]
    [Google Scholar]
  71. Gauthier L, Dortet L, Cotellon G, Creton E, Cuzon G et al. Diversity of carbapenemase-producing Escherichia coli isolates in France in 2012-2013. Antimicrob Agents Chemother 2018; 62:e00266-18 [View Article]
    [Google Scholar]
  72. Sartori L, Fernandes MR, Ienne S, de Souza TA, Gregory L et al. Draft genome sequences of two fluoroquinolone-resistant CTX-M-15-producing Escherichia coli ST90 (ST23 complex) isolated from a calf and a dairy cow in South America. J Glob Antimicrob Resist 2017; 11:145–147 [View Article] [PubMed]
    [Google Scholar]
/content/journal/mgen/10.1099/mgen.0.000863
Loading
/content/journal/mgen/10.1099/mgen.0.000863
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

EXCEL
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error