1887

Abstract

Metagenomics is a valuable diagnostic tool for enhancing microbial food safety because (i) it enables the untargeted detection of pathogens, (ii) it is fast since primary isolation of micro-organisms is not required, and (iii) it has high discriminatory power allowing for a detailed molecular characterization of pathogens. For shotgun metagenomics, total nucleic acids (NAs) are isolated from complex samples such as foodstuff. Along with microbial NAs, high amounts of matrix NAs are extracted that might outcompete microbial NAs during next-generation sequencing and compromise sensitivity for the detection of low abundance micro-organisms. Sensitive laboratory methods are indispensable for detecting highly pathogenic foodborne bacteria like spp., because a low infectious dose is sufficient to cause human disease through the consumption of contaminated dairy or meat products. In our study, we applied shotgun metagenomic sequencing for the identification and characterization of spp. in artificially and naturally contaminated raw milk from various ruminant species. With the depletion of eukaryotic cells prior to DNA extraction, was detectable at 10 bacterial cells ml, while at the same time microbiological culture and isolation of the fastidious bacteria commonly failed. Moreover, we were able to retrieve the genotype of a isolate from a metagenomic dataset, indicating the potential of metagenomics for outbreak investigations using SNPs and core-genome multilocus sequence typing (cgMLST). To improve diagnostic applications, we developed a new bioinformatics approach for strain prediction based on SNPs to identify the correct species and define a certain strain with only low numbers of genus-specific reads per sample. This pipeline turned out to be more sensitive and specific than Mash Screen. In raw milk samples, we simultaneously detected numerous other zoonotic pathogens, antimicrobial resistance genes and virulence factors. Our study showed that metagenomics is a highly sensitive tool for biological risk assessment of foodstuffs, particularly when pathogen isolation is hazardous or challenging.

Funding
This study was supported by the:
  • Science & Technology Development Fund (Egypt) (Award 25425)
    • Principle Award Recipient: MayadaGwida
  • Bundesministerium für Bildung und Forschung (DE) (Award FKZ 13N13982)
    • Principle Award Recipient: JosephineGrützke
Loading

Article metrics loading...

/content/journal/mgen/10.1099/mgen.0.000552
2021-05-04
2021-05-15
Loading full text...

Full text loading...

/deliver/fulltext/mgen/7/5/mgen000552.html?itemId=/content/journal/mgen/10.1099/mgen.0.000552&mimeType=html&fmt=ahah

References

  1. Corbel M J. Brucellosis in Humans and Animals Geneva: World Health Organization; 2006
    [Google Scholar]
  2. Capparelli R, Parlato M, Iannaccone M, Roperto S, Marabelli R et al. Heterogeneous shedding of Brucella abortus in milk and its effect on the control of animal brucellosis. J Appl Microbiol 2009; 106:2041–2047 [CrossRef][PubMed]
    [Google Scholar]
  3. Jansen W, Linard C, Noll M, Nöckler K, Al Dahouk S. Brucella-positive raw milk cheese sold on the inner European market: a public health threat due to illegal import?. Food Control 2019; 100:130–137 [CrossRef]
    [Google Scholar]
  4. Cocolin L, Mataragas M, Bourdichon F, Doulgeraki A, Pilet M-F et al. Next generation microbiological risk assessment meta-omics: the next need for integration. Int J Food Microbiol 2018; 287:10–17 [CrossRef][PubMed]
    [Google Scholar]
  5. Grützke J, Malorny B, Hammerl JA, Busch A, Tausch SH et al. Fishing in the soup – pathogen detection in food safety using metabarcoding and metagenomic sequencing. Front Microbiol 2019; 10:1805 [CrossRef][PubMed]
    [Google Scholar]
  6. EFSA Panel on Biological Hazards (EFSA BIOHAZ Panel) Koutsoumanis K, Allende A, Alvarez-Ordóñez A, Bolton D et al. Whole genome sequencing and metagenomics for outbreak investigation, source attribution and risk assessment of food-borne microorganisms. EFSA J 2019; 17:e05898 [CrossRef][PubMed]
    [Google Scholar]
  7. Leonard SR, Mammel MK, Lacher DW, Elkins CA. Application of metagenomic sequencing to food safety: detection of Shiga toxin-producing Escherichia coli on fresh bagged spinach. Appl Environ Microbiol 2015; 81:8183–8191 [CrossRef][PubMed]
    [Google Scholar]
  8. Bartsch C, Hoper D, Made D, Johne R. Analysis of frozen strawberries involved in a large norovirus gastroenteritis outbreak using next generation sequencing and digital PCR. Food Microbiol 2018; 76:390–395 [CrossRef][PubMed]
    [Google Scholar]
  9. Ottesen AR, Gonzalez A, Bell R, Arce C, Rideout S et al. Co-enriching microflora associated with culture based methods to detect Salmonella from tomato phyllosphere. PLoS One 2013; 8:e73079 [CrossRef][PubMed]
    [Google Scholar]
  10. Jarvis KG, White JR, Grim CJ, Ewing L, Ottesen AR et al. Cilantro microbiome before and after nonselective pre-enrichment for Salmonella using 16S rRNA and metagenomic sequencing. BMC Microbiol 2015; 15:160 [CrossRef][PubMed]
    [Google Scholar]
  11. Feehery GR, Yigit E, Oyola SO, Langhorst BW, Schmidt VT et al. A method for selectively enriching microbial DNA from contaminating vertebrate host DNA. PLoS One 2013; 8:e76096 [CrossRef][PubMed]
    [Google Scholar]
  12. Macher J-N, Speksnijder A, Choo LQ, van der Hoorn B, Renema W. Uncovering bacterial and functional diversity in macroinvertebrate mitochondrial-metagenomic datasets by differential centrifugation. Sci Rep 2019; 9:10257 [CrossRef][PubMed]
    [Google Scholar]
  13. Lim YW, Haynes M, Furlan M, Robertson CE, Harris JK et al. Purifying the impure: sequencing metagenomes and metatranscriptomes from complex animal-associated samples. J Vis Exp 2014; 94:52117 [CrossRef][PubMed]
    [Google Scholar]
  14. Thoendel M, Jeraldo PR, Greenwood-Quaintance KE, Yao JZ, Chia N et al. Comparison of microbial DNA enrichment tools for metagenomic whole genome sequencing. J Microbiol Methods 2016; 127:141–145 [CrossRef][PubMed]
    [Google Scholar]
  15. Hasan MR, Rawat A, Tang P, Jithesh PV, Thomas E et al. Depletion of human DNA in spiked clinical specimens for improvement of sensitivity of pathogen detection by next-generation sequencing. J Clin Microbiol 2016; 54:919–927 [CrossRef][PubMed]
    [Google Scholar]
  16. Marotz CA, Sanders JG, Zuniga C, Zaramela LS, Knight R et al. Improving saliva shotgun metagenomics by chemical host DNA depletion. Microbiome 2018; 6:42 [CrossRef][PubMed]
    [Google Scholar]
  17. Nelson MT, Pope CE, Marsh RL, Wolter DJ, Weiss EJ et al. Human and extracellular DNA depletion for metagenomic analysis of complex clinical infection samples yields optimized viable microbiome profiles. Cell Rep 2019; 26:2227–2240 [CrossRef][PubMed]
    [Google Scholar]
  18. Fong W, Rockett R, Timms V, Sintchenko V. Optimization of sample preparation for culture-independent sequencing of Bordetella pertussis . Microb Genom 2020; 6:e000332 [CrossRef][PubMed]
    [Google Scholar]
  19. Heravi FS, Zakrzewski M, Vickery K, Hu H. Host DNA depletion efficiency of microbiome DNA enrichment methods in infected tissue samples. J Microbiol Methods 2020; 170:105856 [CrossRef][PubMed]
    [Google Scholar]
  20. Farrell ID. The development of a new selective medium for the isolation of Brucella abortus from contaminated sources. Res Vet Sci 1974; 16:280–286 [CrossRef][PubMed]
    [Google Scholar]
  21. Karger A, Melzer F, Timke M, Bettin B, Kostrzewa M et al. Interlaboratory comparison of intact-cell matrix-assisted laser desorption ionization-time of flight mass spectrometry results for identification and differentiation of Brucella spp. J Clin Microbiol 2013; 51:3123–3126 [CrossRef][PubMed]
    [Google Scholar]
  22. Alton GG, Jones LM, Angus RD, Verger JM. Techniques for the Brucellosis Laboratory Paris: Institut National de la Recherche Agronomique; 1988. [CrossRef]
    [Google Scholar]
  23. Al Dahouk S, Nöckler K, Scholz HC, Pfeffer M, Neubauer H et al. Evaluation of genus-specific and species-specific real-time PCR assays for the identification of Brucella spp. Clin Chem Lab Med 2007; 45:1464–1470 [CrossRef][PubMed]
    [Google Scholar]
  24. Cloeckaert A, Grayon M, Grepinet O. An IS711 element downstream of the bp26 gene is a specific marker of Brucella spp. isolated from marine mammals. Clin Diagn Lab Immunol 2000; 7:835–839 [CrossRef][PubMed]
    [Google Scholar]
  25. Chen S, Zhou Y, Chen Y, Gu J. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 2018; 34:i884–i890 [CrossRef][PubMed]
    [Google Scholar]
  26. Wood DE, Lu J, Langmead B. Improved metagenomic analysis with Kraken 2. Genome Biol 2019; 20:257 [CrossRef][PubMed]
    [Google Scholar]
  27. Breitwieser FP, Baker DN, Salzberg SL. KrakenUniq: confident and fast metagenomics classification using unique k-mer counts. Genome Biol 2018; 19:198 [CrossRef][PubMed]
    [Google Scholar]
  28. Ondov BD, Starrett GJ, Sappington A, Kostic A, Koren S et al. Mash Screen: high-throughput sequence containment estimation for genome discovery. Genome Biol 2019; 20:232 [CrossRef][PubMed]
    [Google Scholar]
  29. Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods 2012; 9:357–359 [CrossRef][PubMed]
    [Google Scholar]
  30. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 2009; 25:2078–2079 [CrossRef][PubMed]
    [Google Scholar]
  31. Quinlan AR, Hall IM. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 2010; 26:841–842 [CrossRef][PubMed]
    [Google Scholar]
  32. Treangen TJ, Ondov BD, Koren S, Phillippy AM. The Harvest suite for rapid core-genome alignment and visualization of thousands of intraspecific microbial genomes. Genome Biol 2014; 15:524 [CrossRef][PubMed]
    [Google Scholar]
  33. Li D, Liu CM, Luo R, Sadakane K, Lam TW. MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics 2015; 31:1674–1676 [CrossRef][PubMed]
    [Google Scholar]
  34. Gurevich A, Saveliev V, Vyahhi N, Tesler G. QUAST: quality assessment tool for genome assemblies. Bioinformatics 2013; 29:1072–1075 [CrossRef][PubMed]
    [Google Scholar]
  35. Silva M, Machado MP, Silva DN, Rossi M, Moran-Gilad J et al. chewBBACA: a complete suite for gene-by-gene schema creation and strain identification. Microb Genom 2018; 4:e000166 [CrossRef][PubMed]
    [Google Scholar]
  36. Janowicz A, De Massis F, Ancora M, Cammà C, Patavino C et al. Core genome multilocus sequence typing and single nucleotide polymorphism analysis in the epidemiology of Brucella melitensis infections. J Clin Microbiol 2018; 56:e00517-18 [CrossRef][PubMed]
    [Google Scholar]
  37. Inouye M, Dashnow H, Raven LA, Schultz MB, Pope BJ et al. SRST2: rapid genomic surveillance for public health and hospital microbiology labs. Genome Med 2014; 6:90 [CrossRef][PubMed]
    [Google Scholar]
  38. Letunic I, Bork P. Interactive tree of life (iTOL) v3: an online tool for the display and annotation of phylogenetic and other trees. Nucleic Acids Res 2016; 44:W242–W245 [CrossRef][PubMed]
    [Google Scholar]
  39. Zhou Z, Alikhan NF, Sergeant MJ, Luhmann N, Vaz C et al. GrapeTree: visualization of core genomic relationships among 100,000 bacterial pathogens. Genome Res 2018; 28:1395–1404 [CrossRef][PubMed]
    [Google Scholar]
  40. EFSA Panel on Biological Hazards (BIOHAZ) Scientific opinion on the public health risks related to the consumption of raw drinking milk. EFSA J 2015; 13:3940 [CrossRef]
    [Google Scholar]
  41. Martin FA, Posadas DM, Carrica MC, Cravero SL, O'Callaghan D et al. Interplay between two RND systems mediating antimicrobial resistance in Brucella suis . J Bacteriol 2009; 191:2530–2540 [CrossRef][PubMed]
    [Google Scholar]
  42. Harmon BG, Adams LG, Frey M. Survival of rough and smooth strains of Brucella abortus in bovine mammary gland macrophages. Am J Vet Res 1988; 49:1092–1097[PubMed]
    [Google Scholar]
  43. Al Dahouk S, Scholz HC, Tomaso H, Bahn P, Göllner C et al. Differential phenotyping of Brucella species using a newly developed semi-automated metabolic system. BMC Microbiol 2010; 10:269 [CrossRef][PubMed]
    [Google Scholar]
  44. Leclercq SO, Cloeckaert A, Zygmunt MS. Taxonomic organization of the family Brucellaceae based on a phylogenomic approach. Front Microbiol 2019; 10:3083 [CrossRef][PubMed]
    [Google Scholar]
  45. Low AJ, Koziol AG, Manninger PA, Blais B, Carrillo CD. ConFindr: rapid detection of intraspecies and cross-species contamination in bacterial whole-genome sequence data. PeerJ 2019; 7:e6995 [CrossRef][PubMed]
    [Google Scholar]
  46. Ahn TH, Chai J, Pan C. Sigma: strain-level inference of genomes from metagenomic analysis for biosurveillance. Bioinformatics 2015; 31:170–177 [CrossRef][PubMed]
    [Google Scholar]
  47. Saltykova A, Buytaers FE, Denayer S, Verhaegen B, Piérard D et al. Strain-level metagenomic data analysis of enriched in vitro and in silico spiked food samples: paving the way towards a culture-free foodborne outbreak investigation using STEC as a case study. Int J Mol Sci 2020; 21:5688 [CrossRef][PubMed]
    [Google Scholar]
  48. Uelze L, Grützke J, Borowiak M, Hammerl JA, Juraschek K et al. Typing methods based on whole genome sequencing data. One Health Outlook 2020; 2:3 [CrossRef]
    [Google Scholar]
  49. Salter SJ, Cox MJ, Turek EM, Calus ST, Cookson WO et al. Reagent and laboratory contamination can critically impact sequence-based microbiome analyses. BMC Biol 2014; 12:87 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/mgen/10.1099/mgen.0.000552
Loading
/content/journal/mgen/10.1099/mgen.0.000552
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

EXCEL

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error