- Volume 7, Issue 5, 2021
Volume 7, Issue 5, 2021
- Research Articles
-
- Functional Genomics and Microbe–Niche Interactions
-
-
Phenotypic and genomic characterization of a Vibrio parahaemolyticus strain causing disease in Penaeus vannamei provides insights into its niche adaptation and pathogenic mechanism
The virulence of Vibrio parahaemolyticus is variable depending on its virulence determinants. A V. parahaemolyticus strain, in which the virulence is governed by the pirA and pirB genes, can cause acute hepatopancreatic necrosis disease (AHPND) in shrimps. Some V. parahaemolyticus that are non-AHPND strains also cause shrimp diseases and result in huge economic losses, while their pathogenicity and pathogenesis remain unclear. In this study, a non-AHPND V. parahaemolyticus , TJA114, was isolated from diseased Penaeus vannamei associated with a high mortality. To understand its virulence and adaptation to the external environment, whole-genome sequencing of this isolate was conducted, and its phenotypic profiles including pathogenicity, growth characteristics and nutritional requirements were investigated. Shrimps following artificial infection with this isolate presented similar clinical symptoms to the naturally diseased ones and generated obvious pathological lesions. The growth characteristics indicated that the isolate TJA114 could grow well under different salinity (10–55 p.p.t.), temperature (23–37 °C) and pH (6–10) conditions. Phenotype MicroArray results showed that this isolate could utilize a variety of carbon sources, amino acids and a range of substrates to help itself adapt to the high hyperosmotic and alkaline environments. Antimicrobial-susceptibility test showed that it was a multidrug-resistant bacterium. The whole-genomic analysis showed that this V. parahaemolyticus possessed many important functional genes associated with multidrug resistance, stress response, adhesions, haemolysis, putative secreted proteases, dedicated protein secretion systems and a variety of nutritional metabolic mechanisms. These annotated functional genes were confirmed by the phenotypic profiles. The results in this study indicated that this V. parahaemolyticus isolate possesses a high pathogenicity and strong environmental adaptability.
-
-
-
Analysis of putative quadruplex-forming sequences in fungal genomes: novel antifungal targets?
More LessFungal infections cause >1 million deaths annually and the emergence of antifungal resistance has prompted the exploration for novel antifungal targets. Quadruplexes are four-stranded nucleic acid secondary structures, which can regulate processes such as transcription, translation, replication and recombination. They are also found in genes linked to virulence in microbes, and ligands that bind to quadruplexes can eliminate drug-resistant pathogens. Using a computational approach, we quantified putative quadruplex-forming sequences (PQS) in 1359 genomes across the fungal kingdom and explored their presence in genes related to virulence, drug resistance and biological processes associated with pathogenicity in Aspergillus fumigatus. Here we present the largest analysis of PQS in fungi and identify significant heterogeneity of these sequences throughout phyla, genera and species. PQS were genetically conserved in Aspergillus spp. and frequently pathogenic species appeared to contain fewer PQS than their lesser/non-pathogenic counterparts. GO-term analysis identified that PQS-containing genes were involved in processes linked with virulence such as zinc ion binding, the biosynthesis of secondary metabolites and regulation of transcription in A. fumigatus. Although the genome frequency of PQS was lower in A. fumigatus, PQS could be found enriched in genes involved in virulence, and genes upregulated during germination and hypoxia. Moreover, PQS were found in genes involved in drug resistance. Quadruplexes could have important roles within fungal biology and virulence, but their roles require further elucidation.
-
- Microbial Communities
-
-
Direct identification and molecular characterization of zoonotic hazards in raw milk by metagenomics using Brucella as a model pathogen
Metagenomics is a valuable diagnostic tool for enhancing microbial food safety because (i) it enables the untargeted detection of pathogens, (ii) it is fast since primary isolation of micro-organisms is not required, and (iii) it has high discriminatory power allowing for a detailed molecular characterization of pathogens. For shotgun metagenomics, total nucleic acids (NAs) are isolated from complex samples such as foodstuff. Along with microbial NAs, high amounts of matrix NAs are extracted that might outcompete microbial NAs during next-generation sequencing and compromise sensitivity for the detection of low abundance micro-organisms. Sensitive laboratory methods are indispensable for detecting highly pathogenic foodborne bacteria like Brucella spp., because a low infectious dose is sufficient to cause human disease through the consumption of contaminated dairy or meat products. In our study, we applied shotgun metagenomic sequencing for the identification and characterization of Brucella spp. in artificially and naturally contaminated raw milk from various ruminant species. With the depletion of eukaryotic cells prior to DNA extraction, Brucella was detectable at 10 bacterial cells ml−1, while at the same time microbiological culture and isolation of the fastidious bacteria commonly failed. Moreover, we were able to retrieve the genotype of a Brucella isolate from a metagenomic dataset, indicating the potential of metagenomics for outbreak investigations using SNPs and core-genome multilocus sequence typing (cgMLST). To improve diagnostic applications, we developed a new bioinformatics approach for strain prediction based on SNPs to identify the correct species and define a certain strain with only low numbers of genus-specific reads per sample. This pipeline turned out to be more sensitive and specific than Mash Screen. In raw milk samples, we simultaneously detected numerous other zoonotic pathogens, antimicrobial resistance genes and virulence factors. Our study showed that metagenomics is a highly sensitive tool for biological risk assessment of foodstuffs, particularly when pathogen isolation is hazardous or challenging.
-
-
-
Potential syntrophic relationship between coral-associated Prosthecochloris and its companion sulfate-reducing bacterium unveiled by genomic analysis
Endolithic microbial symbionts in the coral skeleton may play a pivotal role in maintaining coral health. However, compared to aerobic micro-organisms, research on the roles of endolithic anaerobic micro-organisms and microbe–microbe interactions in the coral skeleton are still in their infancy. In our previous study, we showed that a group of coral-associated Prosthecochloris (CAP), a genus of anaerobic green sulphur bacteria, was dominant in the skeleton of the coral Isopora palifera. Though CAP is diverse, the 16S rRNA phylogeny presents it as a distinct clade separate from other free-living Prosthecochloris . In this study, we build on previous research and further characterize the genomic and metabolic traits of CAP by recovering two new high-quality CAP genomes – Candidatus Prosthecochloris isoporae and Candidatus Prosthecochloris sp. N1 – from the coral I. palifera endolithic cultures. Genomic analysis revealed that these two CAP genomes have high genomic similarities compared with other Prosthecochloris and harbour several CAP-unique genes. Interestingly, different CAP species harbour various pigment synthesis and sulphur metabolism genes, indicating that individual CAPs can adapt to a diversity of coral microenvironments. A novel high-quality genome of sulfate-reducing bacterium (SRB)– Candidatus Halodesulfovibrio lyudaonia – was also recovered from the same culture. The fact that CAP and various SRB co-exist in coral endolithic cultures and coral skeleton highlights the importance of SRB in the coral endolithic community. Based on functional genomic analysis of Ca. P. sp. N1, Ca. P. isoporae and Ca. H. lyudaonia, we also propose a syntrophic relationship between the SRB and CAP in the coral skeleton.
-
- Pathogens and Epidemiology
-
-
Cas9-targeted nanopore sequencing reveals epigenetic heterogeneity after de novo assembly of native full-length hepatitis B virus genomes
Hepatitis B virus (HBV) contains a 3.2 kb DNA genome and causes acute and chronic hepatitis. HBV infection is a global health problem, with 350 million chronically infected people at increased risk of developing liver disease and hepatocellular carcinoma (HCC). Methylation of HBV DNA in a CpG context (5mCpG) can alter the expression patterns of viral genes related to infection and cellular transformation. Moreover, it may also provide clues as to why certain infections are cleared or persist with or without progression to cancer. The detection of 5mCpG often requires techniques that damage DNA or introduce bias through a myriad of limitations. Therefore, we developed a method for the detection of 5mCpG on the HBV genome that does not rely on bisulfite conversion or PCR. With Cas9-guided RNPs to specifically target the HBV genome, we enriched in HBV DNA from primary human hepatocytes (PHHs) infected with different HBV genotypes, as well as enriching in HBV from infected patient liver tissue, followed by sequencing with Oxford Nanopore Technologies MinION. Detection of 5mCpG by nanopore sequencing was benchmarked with bisulfite-quantitative methyl-specific qPCR (BS-qMSP). The 5mCpG levels in HBV determined by BS-qMSP and nanopore sequencing were highly correlated. Our nanopore sequencing approach achieved a coverage of ~2000× of HBV depending on infection efficiency, sufficient coverage to perform a de novo assembly and detect small fluctuations in HBV methylation, providing the first de novo assembly of native HBV DNA, as well as the first landscape of 5mCpG from native HBV sequences. Moreover, by capturing entire HBV genomes, we explored the epigenetic heterogeneity of HBV in infected patients and identified four epigenetically distinct clusters based on methylation profiles. This method is a novel approach that enables the enrichment of viral DNA in a mixture of nucleic acid material from different species and will serve as a valuable tool for infectious disease monitoring.
-
-
-
bla OXA-48-like genome architecture among carbapenemase-producing Escherichia coli and Klebsiella pneumoniae in the Netherlands
Carbapenem-hydrolysing enzymes belonging to the OXA-48-like group are encoded by bla OXA-48-like alleles and are abundant among Enterobacterales in the Netherlands. Therefore, the objective here was to investigate the characteristics, gene content and diversity of the bla OXA-48-like carrying plasmids and chromosomes of Escherichia coli and Klebsiella pneumoniae collected in the Dutch national surveillance from 2014 to 2019 in comparison with genome sequences from 29 countries. A combination of short-read genome sequencing with long-read sequencing enabled the reconstruction of 47 and 132 complete bla OXA-48-like plasmids for E. coli and K. pneumoniae , respectively. Seven distinct plasmid groups designated as pOXA-48-1 to pOXA-48-5, pOXA-181 and pOXA-232 were identified in the Netherlands which were similar to internationally reported plasmids obtained from countries from North and South America, Europe, Asia and Oceania. The seven plasmid groups varied in size, G+C content, presence of antibiotic resistance genes, replicon family and gene content. The pOXA-48-1 to pOXA-48-5 plasmids were variable, and the pOXA-181 and pOXA-232 plasmids were conserved. The pOXA-48-1, pOXA-48-2, pOXA-48-3 and pOXA-48-5 groups contained a putative conjugation system, but this was absent in the pOXA-48-4, pOXA-181 and pOXA-232 plasmid groups. pOXA-48 plasmids contained the PemI antitoxin, while the pOXA-181 and pOXA-232 plasmids did not. Furthermore, the pOXA-181 plasmids carried a virB2-virB3-virB9-virB10-virB11 type IV secretion system, while the pOXA-48 plasmids and pOXA-232 lacked this system. A group of non-related pOXA-48 plasmids from the Netherlands contained different resistance genes, non-IncL-type replicons or no replicons. Whole genome multilocus sequence typing revealed that the bla OXA-48-like plasmids were found in a wide variety of genetic backgrounds in contrast to chromosomally encoded bla OXA-48-like alleles. Chromosomally localized bla OXA-48 and bla OXA-244 alleles were located on genetic elements of variable sizes and comprised regions of pOXA-48 plasmids. The bla OXA-48-like genetic element was flanked by a direct repeat upstream of IS1R, and was found at multiple locations in the chromosomes of E. coli . Lastly, K. pneumoniae isolates carrying bla OXA-48 or bla OXA-232 were mostly resistant for meropenem, whereas E. coli bla OXA-48, bla OXA-181 and chromosomal bla OXA-48 or bla OXA-244 isolates were mostly sensitive. In conclusion, the overall bla OXA-48-like plasmid population in the Netherlands is conserved and similar to that reported for other countries, confirming global dissemination of bla OXA-48-like plasmids. Variations in size, presence of antibiotic resistance genes and gene content impacted pOXA-48, pOXA-181 and pOXA-232 plasmid architecture.
-
-
-
Population structure and transmission of Mycobacterium bovis in Ethiopia
Gizat Almaw, Getnet Abie Mekonnen, Adane Mihret, Abraham Aseffa, Hawult Taye, Andrew J. K. Conlan, Balako Gumi, Aboma Zewude, Abde Aliy, Mekdes Tamiru, Abebe Olani, Matios Lakew, Melaku Sombo, Solomon Gebre, Colette Diguimbaye, Markus Hilty, Adama Fané, Borna Müller, R. Glyn Hewinson, Richard J. Ellis, Javier Nunez-Garcia, Eleftheria Palkopoulou, Tamrat Abebe, Gobena Ameni, Julian Parkhill, James L. N. Wood, the ETHICOBOTS consortium, Stefan Berg and Andries J. van TonderBovine tuberculosis (bTB) is endemic in cattle in Ethiopia, a country that hosts the largest national cattle herd in Africa. The intensive dairy sector, most of which is peri-urban, has the highest prevalence of disease. Previous studies in Ethiopia have demonstrated that the main cause is Mycobacterium bovis , which has been investigated using conventional molecular tools including deletion typing, spoligotyping and Mycobacterial interspersed repetitive unit-variable number tandem repeat (MIRU-VNTR). Here we use whole-genome sequencing to examine the population structure of M. bovis in Ethiopia. A total of 134 M . bovis isolates were sequenced including 128 genomes from 85 mainly dairy cattle and six genomes isolated from humans, originating from 12 study sites across Ethiopia. These genomes provided a good representation of the previously described population structure of M. bovis , based on spoligotyping and demonstrated that the population is dominated by the clonal complexes African 2 (Af2) and European 3 (Eu3). A range of within-host diversity was observed amongst the isolates and evidence was found for both short- and long-distance transmission. Detailed analysis of available genomes from the Eu3 clonal complex combined with previously published genomes revealed two distinct introductions of this clonal complex into Ethiopia between 1950 and 1987, likely from Europe. This work is important to help better understand bTB transmission in cattle in Ethiopia and can potentially inform national strategies for bTB control in Ethiopia and beyond.
-
-
-
Fatal exudative dermatitis in island populations of red squirrels (Sciurus vulgaris): spillover of a virulent Staphylococcus aureus clone (ST49) from reservoir hosts
Fatal exudative dermatitis (FED) is a significant cause of death of red squirrels (Sciurus vulgaris) on the island of Jersey in the Channel Islands where it is associated with a virulent clone of Staphylococcus aureus, ST49. S. aureus ST49 has been found in other hosts such as small mammals, pigs and humans, but the dynamics of carriage and disease of this clone, or any other lineage in red squirrels, is currently unknown. We used whole-genome sequencing to characterize 228 isolates from healthy red squirrels on Jersey, the Isle of Arran (Scotland) and Brownsea Island (England), from red squirrels showing signs of FED on Jersey and the Isle of Wight (England) and a small number of isolates from other hosts. S. aureus was frequently carried by red squirrels on the Isle of Arran with strains typically associated with small ruminants predominating. For the Brownsea carriage, S. aureus was less frequent and involved strains associated with birds, small ruminants and humans, while for the Jersey carriage S. aureus was rare but ST49 predominated in diseased squirrels. By combining our data with publicly available sequences, we show that the S. aureus carriage in red squirrels largely reflects frequent but facile acquisitions of strains carried by other hosts sharing their habitat (‘spillover’), possibly including, in the case of ST188, humans. Genome-wide association analysis of the ruminant lineage ST133 revealed variants in a small number of mostly bacterial-cell-membrane-associated genes that were statistically associated with squirrel isolates from the Isle of Arran, raising the possibility of specific adaptation to red squirrels in this lineage. In contrast there is little evidence that ST49 is a common carriage isolate of red squirrels and infection from reservoir hosts such as bank voles or rats, is likely to be driving the emergence of FED in red squirrels.
-
-
-
Genomic and temporal analyses of Mycobacterium bovis in southern Brazil
Mycobacterium bovis is a causal agent of bovine tuberculosis (bTB), one of the most important diseases currently facing the cattle industry worldwide. Tracing the source of M. bovis infections of livestock is an important tool for understanding the epidemiology of bTB and defining control/eradication strategies. In this study, whole genome sequencing (WGS) of 74 M . bovis isolates sourced from naturally infected cattle in the State of Rio Grande do Sul (RS), southern Brazil, was used to evaluate the population structure of M. bovis in the region, identify potential transmission events and date the introduction of clonal complex (CC) European 2 (Eu2). In silico spoligotyping identified 11 distinct patterns including four new profiles and two CCs, European 1 (Eu1) and Eu2. The analyses revealed a high level of genetic diversity in the majority of herds and identified putative transmission clusters that suggested that within- and between-herd transmission is occurring in RS. In addition, a comparison with other published M. bovis isolates from Argentina, Brazil, Paraguay and Uruguay demonstrated some evidence for a possible cross-border transmission of CC Eu1 into RS from Uruguay or Argentina. An estimated date for the introduction of CC Eu2 into RS in the middle of the 19th century correlated with the historical introduction of cattle into RS to improve existing local breeds. These findings contribute to the understanding of the population structure of M. bovis in southern Brazil and highlight the potential of WGS in surveillance and helping to identify bTB transmission.
-
-
-
Characterization of beta-lactam-resistant Escherichia coli from Australian fruit bats indicates anthropogenic origins
More LessAntimicrobial-resistant Escherichia coli , particularly those resistant to critically important antimicrobials, are increasingly reported in wildlife. The dissemination of antimicrobial-resistant bacteria to wildlife indicates the far-reaching impact of selective pressures imposed by humans on bacteria through misuse of antimicrobials. The grey-headed flying fox (GHFF; Pteropus poliocephalus), a fruit bat endemic to eastern Australia, commonly inhabits urban environments and encounters human microbial pollution. To determine if GHFF have acquired human-associated bacteria, faecal samples from wild GHFF (n=287) and captive GHFF undergoing rehabilitation following illness or injury (n=31) were cultured to detect beta-lactam-resistant E. coli . Antimicrobial susceptibility testing, PCR and whole genome sequencing were used to determine phenotypic and genotypic antimicrobial resistance profiles, strain type and virulence factor profiles. Overall, 3.8 % of GHFF carried amoxicillin-resistant E. coli (wild 3.5 % and captive 6.5 %), with 38.5 % of the 13 GHFF E. coli isolates exhibiting multidrug resistance. Carbapenem (bla NDM-5) and fluoroquinolone resistance were detected in one E. coli isolate, and two isolates were resistant to third-generation cephalosporins (bla CTX-M-27 and ampC). Resistance to tetracycline and trimethoprim plus sulfamethoxazole were detected in 69.2% and 30.8 % of isolates respectively. Class 1 integrons, a genetic determinant of resistance, were detected in 38.5 % of isolates. Nine of the GHFF isolates (69.2 %) harboured extraintestinal virulence factors. Phylogenetic analysis placed the 13 GHFF isolates in lineages associated with humans and/or domestic animals. Three isolates were human-associated extraintestinal pathogenic E. coli (ST10 O89:H9, ST73 and ST394) and seven isolates belonged to lineages associated with extraintestinal disease in both humans and domestic animals (ST88, ST117, ST131, ST155 complex, ST398 and ST1850). This study provides evidence of anthropogenic multidrug-resistant and pathogenic E. coli transmission to wildlife, further demonstrating the necessity for incorporating wildlife surveillance within the One Health approach to managing antimicrobial resistance.
-
-
-
Comparative genomics reveals an SNP potentially leading to phenotypic diversity of Salmonella enterica serovar Enteritidis
More LessAn SNP is a spontaneous genetic change having a potential to modify the functions of the original genes and to lead to phenotypic diversity of bacteria in nature. In this study, a phylogenetic analysis of Salmonella enterica serovar Enteritidis, a major food-borne pathogen, showed that eight strains of S. Enteritidis isolated in South Korea, including FORC_075 and FORC_078, have almost identical genome sequences. Interestingly, however, the abilities of FORC_075 to form biofilms and red, dry and rough (RDAR) colonies were significantly impaired, resulting in phenotypic differences among the eight strains. Comparative genomic analyses revealed that one of the non-synonymous SNPs unique to FORC_075 has occurred in envZ, which encodes a sensor kinase of the EnvZ/OmpR two-component system. The SNP in envZ leads to an amino acid change from Pro248 (CCG) in other strains including FORC_078 to Leu248 (CTG) in FORC_075. Allelic exchange of envZ between FORC_075 and FORC_078 identified that the SNP in envZ is responsible for the impaired biofilm- and RDAR colony-forming abilities of S. Enteritidis. Biochemical analyses demonstrated that the SNP in envZ significantly increases the phosphorylated status of OmpR in S. Enteritidis and alters the expression of the OmpR regulon. Phenotypic analyses further identified that the SNP in envZ decreases motility of S. Enteritidis but increases its adhesion and invasion to both human epithelial cells and murine macrophage cells. In addition to an enhancement of infectivity to the host cells, survival under acid stress was also elevated by the SNP in envZ. Together, these results suggest that the natural occurrence of the SNP in envZ could contribute to phenotypic diversity of S. Enteritidis, possibly improving its fitness and pathogenesis.
-
-
-
Genomic epidemiology of tuberculosis in eastern Malaysia: insights for strengthening public health responses
Tuberculosis is a leading public health priority in eastern Malaysia. Knowledge of the genomic epidemiology of tuberculosis can help tailor public health interventions. Our aims were to determine tuberculosis genomic epidemiology and characterize resistance mutations in the ethnically diverse city of Kota Kinabalu, Sabah, located at the nexus of Malaysia, Indonesia, Philippines and Brunei. We used an archive of prospectively collected Mycobacterium tuberculosis samples paired with epidemiological data. We collected sputum and demographic data from consecutive consenting outpatients with pulmonary tuberculosis at the largest tuberculosis clinic from 2012 to 2014, and selected samples from tuberculosis inpatients from the tertiary referral centre during 2012–2014 and 2016–2017. Two hundred and eight M . tuberculosis sequences were available for analysis, representing 8 % of cases notified during the study periods. Whole-genome phylogenetic analysis demonstrated that most strains were lineage 1 (195/208, 93.8 %), with the remainder being lineages 2 (8/208, 3.8 %) or 4 (5/208, 2.4 %). Lineages or sub-lineages were not associated with patient ethnicity. The lineage 1 strains were diverse, with sub-lineage 1.2.1 being dominant (192, 98 %). Lineage 1.2.1.3 isolates were geographically most widely distributed. The greatest diversity occurred in a border town sub-district. The time to the most recent common ancestor for the three major lineage 1.2.1 clades was estimated to be the year 1966 (95 % HPD 1948–1976). An association was found between failure of culture conversion by week 8 of treatment and infection with lineage 2 (4/6, 67 %) compared with lineage 1 strains (4/83, 5 %) (P<0.001), supporting evidence of greater virulence of lineage 2 strains. Eleven potential transmission clusters (SNP difference ≤12) were identified; at least five included people living in different sub-districts. Some linked cases spanned the whole 4-year study period. One cluster involved a multidrug-resistant tuberculosis strain matching a drug-susceptible strain from 3 years earlier. Drug resistance mutations were uncommon, but revealed one phenotype–genotype mismatch in a genotypically multidrug-resistant isolate, and rare nonsense mutations within the katG gene in two isolates. Consistent with the regionally mobile population, M. tuberculosis strains in Kota Kinabalu were diverse, although several lineage 1 strains dominated and were locally well established. Transmission clusters – uncommonly identified, likely attributable to incomplete sampling – showed clustering occurring across the community, not confined to households or sub-districts. The findings indicate that public health priorities should include active case finding and early institution of tuberculosis management in mobile populations, while there is a need to upscale effective contact investigation beyond households to include other contacts within social networks.
-
-
-
Insights into the acquisition of the pks island and production of colibactin in the Escherichia coli population
The pks island codes for the enzymes necessary for synthesis of the genotoxin colibactin, which contributes to the virulence of Escherichia coli strains and is suspected of promoting colorectal cancer. From a collection of 785 human and bovine E. coli isolates, we identified 109 strains carrying a highly conserved pks island, mostly from phylogroup B2, but also from phylogroups A, B1 and D. Different scenarios of pks acquisition were deduced from whole genome sequence and phylogenetic analysis. In the main scenario, pks was introduced and stabilized into certain sequence types (STs) of the B2 phylogroup, such as ST73 and ST95, at the asnW tRNA locus located in the vicinity of the yersiniabactin-encoding High Pathogenicity Island (HPI). In a few B2 strains, pks inserted at the asnU or asnV tRNA loci close to the HPI and occasionally was located next to the remnant of an integrative and conjugative element. In a last scenario specific to B1/A strains, pks was acquired, independently of the HPI, at a non-tRNA locus. All the pks-positive strains except 18 produced colibactin. Sixteen strains contained mutations in clbB or clbD, or a fusion of clbJ and clbK and were no longer genotoxic but most of them still produced low amounts of potentially active metabolites associated with the pks island. One strain was fully metabolically inactive without pks alteration, but colibactin production was restored by overexpressing the ClbR regulator. In conclusion, the pks island is not restricted to human pathogenic B2 strains and is more widely distributed in the E. coli population, while preserving its functionality.
-
- Evolution and Responses to Interventions
-
-
Experimental evolution in morbidostat reveals converging genomic trajectories on the path to triclosan resistance
Understanding the dynamics and mechanisms of acquired drug resistance across major classes of antibiotics and bacterial pathogens is of critical importance for the optimization of current anti-infective therapies and the development of novel ones. To systematically address this challenge, we developed a workflow combining experimental evolution in a morbidostat continuous culturing device with deep genomic sequencing of population samples collected in time series. This approach was applied to the experimental evolution of six populations of Escherichia coli BW25113 towards acquiring resistance to triclosan (TCS), an antibacterial agent in various consumer products. This study revealed the rapid emergence and expansion (up to 100% in each culture within 4 days) of missense mutations in the fabI gene, encoding enoyl-acyl carrier protein reductase, the known TCS molecular target. A follow-up analysis of isolated clones showed that distinct amino acid substitutions increased the drug IC90 in a 3–16-fold range, reflecting their proximity to the TCS-binding site. In contrast to other antibiotics, efflux-upregulating mutations occurred only rarely and with low abundance. Mutations in several other genes were detected at an earlier stage of evolution. Most notably, three distinct amino acid substitutions were mapped in the C-terminal periplasmic domain of CadC protein, an acid stress-responsive transcriptional regulator. While these mutations do not confer robust TCS resistance, they appear to play a certain, yet unknown, role in adaptation to relatively low drug pressure. Overall, the observed evolutionary trajectories suggest that the FabI enzyme is the sole target of TCS (at least up to the ~50 µm level), and amino acid substitutions in the TCS-binding site represent the main mechanism of robust TCS resistance in E. coli . This model study illustrates the potential utility of the established morbidostat-based approach for uncovering resistance mechanisms and target identification for novel drug candidates with yet unknown mechanisms of action.
-
-
-
Phylogenetic analysis of the salinipostin γ-butyrolactone gene cluster uncovers new potential for bacterial signalling-molecule diversity
More LessBacteria communicate by small-molecule chemicals that facilitate intra- and inter-species interactions. These extracellular signalling molecules mediate diverse processes including virulence, bioluminescence, biofilm formation, motility and specialized metabolism. The signalling molecules produced by members of the phylum Actinobacteria generally comprise γ-butyrolactones, γ-butenolides and furans. The best-known actinomycete γ-butyrolactone is A-factor, which triggers specialized metabolism and morphological differentiation in the genus Streptomyces . Salinipostins A–K are unique γ-butyrolactone molecules with rare phosphotriester moieties that were recently characterized from the marine actinomycete genus Salinispora . The production of these compounds has been linked to the nine-gene biosynthetic gene cluster (BGC) spt. Critical to salinipostin assembly is the γ-butyrolactone synthase encoded by spt9. Here, we report the surprising distribution of spt9 homologues across 12 bacterial phyla, the majority of which are not known to produce γ-butyrolactones. Further analyses uncovered a large group of spt-like gene clusters outside of the genus Salinispora , suggesting the production of new salinipostin-like diversity. These gene clusters show evidence of horizontal transfer and location-specific recombination among Salinispora strains. The results suggest that γ-butyrolactone production may be more widespread than previously recognized. The identification of new γ-butyrolactone BGCs is the first step towards understanding the regulatory roles of the encoded small molecules in Actinobacteria.
-
- Short Communications
-
- Pathogens and Epidemiology
-
-
Whole genome sequence analysis of Shigella from Malawi identifies fluoroquinolone resistance
Increasing antimicrobial resistance and limited alternative treatments have led to fluoroquinolone-resistant Shigella strain inclusion on the WHO global priority pathogens list. In this study we characterized multiple Shigella isolates from Malawi with whole genome sequence analysis, identifying the acquirable fluoroquinolone resistance determinant qnrS1.
-