1887

Abstract

Bovine tuberculosis (bTB) is endemic in cattle in Ethiopia, a country that hosts the largest national cattle herd in Africa. The intensive dairy sector, most of which is peri-urban, has the highest prevalence of disease. Previous studies in Ethiopia have demonstrated that the main cause is , which has been investigated using conventional molecular tools including deletion typing, spoligotyping and Mycobacterial interspersed repetitive unit-variable number tandem repeat (MIRU-VNTR). Here we use whole-genome sequencing to examine the population structure of in Ethiopia. A total of 134 . isolates were sequenced including 128 genomes from 85 mainly dairy cattle and six genomes isolated from humans, originating from 12 study sites across Ethiopia. These genomes provided a good representation of the previously described population structure of , based on spoligotyping and demonstrated that the population is dominated by the clonal complexes African 2 (Af2) and European 3 (Eu3). A range of within-host diversity was observed amongst the isolates and evidence was found for both short- and long-distance transmission. Detailed analysis of available genomes from the Eu3 clonal complex combined with previously published genomes revealed two distinct introductions of this clonal complex into Ethiopia between 1950 and 1987, likely from Europe. This work is important to help better understand bTB transmission in cattle in Ethiopia and can potentially inform national strategies for bTB control in Ethiopia and beyond.

Loading

Article metrics loading...

/content/journal/mgen/10.1099/mgen.0.000539
2021-05-04
2021-05-15
Loading full text...

Full text loading...

/deliver/fulltext/mgen/7/5/mgen000539.html?itemId=/content/journal/mgen/10.1099/mgen.0.000539&mimeType=html&fmt=ahah

References

  1. Brosch R, Gordon SV, Marmiesse M, Brodin P, Buchrieser C et al. A new evolutionary scenario for the Mycobacterium tuberculosis complex. Proc Natl Acad Sci U S A 2002; 99:3684–3689 [CrossRef][PubMed]
    [Google Scholar]
  2. WHO, FAO, OIE, The Union Roadmap for zoonotic tuberculosis 2017. ISBN: (WHO) 978-92-4-151304-3.
  3. Grace D, Mutua F, Ochungo P, Kruska R, Jones K et al. Mapping of poverty and likely zoonoses hotspots; 2012
  4. Reviriego Gordejo FJ, Vermeersch JP, Gordejo FJR. Towards eradication of bovine tuberculosis in the European Union. Vet Microbiol 2006; 112:101–109 [CrossRef][PubMed]
    [Google Scholar]
  5. Cousins DV, Roberts JL. Australia's campaign to eradicate bovine tuberculosis: the battle for freedom and beyond. Tuberculosis 2001; 81:5–15 [CrossRef][PubMed]
    [Google Scholar]
  6. Vol I Report on livestock and livestock characteristics. Statistical Bulletin 570:
    [Google Scholar]
  7. Sibhat B, Asmare K, Demissie K, Ayelet G, Mamo G et al. Bovine tuberculosis in Ethiopia: a systematic review and meta-analysis. Prev Vet Med 2017; 147:149–157 [CrossRef][PubMed]
    [Google Scholar]
  8. Firdessa R, Tschopp R, Wubete A, Sombo M, Hailu E et al. High prevalence of bovine tuberculosis in dairy cattle in central Ethiopia: implications for the dairy industry and public health. PLoS One 2012; 7:e52851 [CrossRef][PubMed]
    [Google Scholar]
  9. Elias K, Hussein D, Asseged B, Wondwossen T, Gebeyehu M. Status of bovine tuberculosis in Addis Ababa dairy farms. Rev Sci Tech Off Int Epiz 2008; 27:915–923 [CrossRef]
    [Google Scholar]
  10. Shapiro B, Gebru G, Desta S, Negassa A, Nigussie K et al. Ethiopia livestock master plan. LRI Project Report Nairobi, Kenya: International Livestock Research Institute (ILRI); 2015
    [Google Scholar]
  11. Berg S, Firdessa R, Habtamu M, Gadisa E, Mengistu A et al. The burden of mycobacterial disease in Ethiopian cattle: implications for public health. PLoS One 2009; 4:e5068 [CrossRef][PubMed]
    [Google Scholar]
  12. Ameni G, Desta F, Firdessa R. Molecular typing of Mycobacterium bovis isolated from tuberculosis lesions of cattle in North eastern Ethiopia. Vet Rec 2010; 167:138–141 [CrossRef][PubMed]
    [Google Scholar]
  13. Ameni G, Erkihun A. Bovine tuberculosis on small-scale dairy farms in Adama town, central Ethiopia, and farmer awareness of the disease. Rev Sci Tech 2007; 26:711–719[PubMed]
    [Google Scholar]
  14. Ameni G, Tafess K, Zewde A, Eguale T, Tilahun M et al. Vaccination of calves with Mycobacterium bovis Bacillus Calmette-Guerin reduces the frequency and severity of lesions of bovine tuberculosis under a natural transmission setting in Ethiopia. Transbound Emerg Dis 2018; 65:96–104 [CrossRef][PubMed]
    [Google Scholar]
  15. Biffa D, Skjerve E, Oloya J, Bogale A, Abebe F et al. Molecular characterization of Mycobacterium bovis isolates from Ethiopian cattle. BMC Vet Res 2010; 6:28 [CrossRef][PubMed]
    [Google Scholar]
  16. Gumi B, Schelling E, Firdessa R, Erenso G, Biffa D et al. Low prevalence of bovine tuberculosis in Somali pastoral livestock, Southeast Ethiopia. Trop Anim Health Prod 2012; 44:1445–1450 [CrossRef][PubMed]
    [Google Scholar]
  17. Mekibeb A, Fulasa TT, Firdessa R, Hailu E. Prevalence study on bovine tuberculosis and molecular characterization of its causative agents in cattle slaughtered at Addis Ababa municipal abattoir, central Ethiopia. Trop Anim Health Prod 2013; 45:763–769 [CrossRef][PubMed]
    [Google Scholar]
  18. Tsegaye W, Aseffa A, Mache A, Mengistu Y, Stefan B. Ameni G: Conventional and molecular epidemiology of bovine tuberculosis in dairy farms in addis ababa city, the capital of ethiopia. J Appl Res Vet Med 2010; 8:143
    [Google Scholar]
  19. Mamo G, Bayleyegn G, Sisay Tessema T, Legesse M, Medhin G et al. Pathology of camel tuberculosis and molecular characterization of its causative agents in pastoral regions of Ethiopia. PLoS One 2011; 6:e15862 [CrossRef][PubMed]
    [Google Scholar]
  20. Berg S, Garcia-Pelayo MC, Muller B, Hailu E, Asiimwe B et al. African 2, a clonal complex of Mycobacterium bovis epidemiologically important in East Africa. J Bacteriol 2011; 193:670–678 [CrossRef][PubMed]
    [Google Scholar]
  21. Li W, Raoult D, Fournier P-E. Bacterial strain typing in the genomic era. FEMS Microbiol Rev 2009; 33:892–916 [CrossRef][PubMed]
    [Google Scholar]
  22. Kanduma E, McHugh TD, Gillespie SH. Molecular methods for Mycobacterium tuberculosis strain typing: a users guide. J Appl Microbiol 2003; 94:781–791 [CrossRef][PubMed]
    [Google Scholar]
  23. Allix C, Walravens K, Saegerman C, Godfroid J, Supply P. Evaluation of the epidemiological relevance of variable-number tandem-repeat genotyping of Mycobacterium bovis and comparison of the method with IS6110 restriction fragment length polymorphism analysis and spoligotyping. J Clin Microbiol 2006; 44:3471 [CrossRef]
    [Google Scholar]
  24. Smith NH, Gordon SV, de la Rua-Domenech R, Clifton-Hadley RS, Hewinson RG. Bottlenecks and broomsticks: the molecular evolution of Mycobacterium bovis . Nat Rev Microbiol 2006; 4:670–681 [CrossRef][PubMed]
    [Google Scholar]
  25. Rodriguez-Campos S, Aranaz A, de Juan L, Saez-Llorente JL, Romero B et al. Limitations of spoligotyping and variable-number tandem-repeat typing for molecular tracing of Mycobacterium bovis in a high-diversity setting. J Clin Microbiol 2011; 49:3361–3364 [CrossRef][PubMed]
    [Google Scholar]
  26. Ahlstrom C, Barkema HW, Stevenson K, Zadoks RN, Biek R et al. Limitations of variable number of tandem repeat typing identified through whole genome sequencing of Mycobacterium avium subsp. paratuberculosis on a national and herd level. BMC Genomics 2015; 16:161 [CrossRef][PubMed]
    [Google Scholar]
  27. Ghebremariam MK, Hlokwe T, Rutten VPMG, Allepuz A, Cadmus S et al. Genetic profiling of Mycobacterium bovis strains from slaughtered cattle in Eritrea. PLoS Negl Trop Dis 2018; 12:e0006406 [CrossRef][PubMed]
    [Google Scholar]
  28. Branger M, Loux V, Cochard T, Boschiroli ML, Biet F et al. The complete genome sequence of Mycobacterium bovis Mb3601, a SB0120 spoligotype strain representative of a new clonal group. Infect Genet Evol 2020; 82:104309 [CrossRef][PubMed]
    [Google Scholar]
  29. Roberts GD, Koneman EW, Kim YK. Mycobacterium. Edited by Barlow et al. Manual of clinical microbiology Washington, DC: American Society for Clinical Microbiology; 1991 pp 304–339
    [Google Scholar]
  30. Zumárraga MJ, Soutullo A, García MI, Marini R, Abdala A et al. Detection of Mycobacterium bovis -infected dairy herds using PCR in bulk tank milk samples. Foodborne Pathog Dis 2012; 9:132–137 [CrossRef][PubMed]
    [Google Scholar]
  31. Medeiros L, Marassi CD, Duarte RS, da Silva MG, Lilenbaum W. Comparison of decontamination methods for primary isolation of Mycobacterium bovis in paucibacillary bovine tissues. Lett Appl Microbiol 2012; 54:182–186 [CrossRef][PubMed]
    [Google Scholar]
  32. Machado A, Rito T, Ghebremichael S, Muhate N, Maxhuza G et al. Genetic diversity and potential routes of transmission of Mycobacterium bovis in Mozambique. PLoS Negl Trop Dis 2018; 12:e0006147 [CrossRef][PubMed]
    [Google Scholar]
  33. Firdessa R, Berg S, Hailu E, Schelling E, Gumi B et al. Mycobacterial lineages causing pulmonary and extrapulmonary tuberculosis, Ethiopia. Emerg Infect Dis 2013; 19:460–463 [CrossRef][PubMed]
    [Google Scholar]
  34. Gumi B, Schelling E, Berg S, Firdessa R, Erenso G et al. Zoonotic transmission of tuberculosis between pastoralists and their livestock in south-east Ethiopia. Ecohealth 2012; 9:139–149 [CrossRef][PubMed]
    [Google Scholar]
  35. FastQC A quality control tool for high throughput sequence data. http://www.bioinformatics.babraham.ac.uk/projects/fastqc
  36. Wood DE, Salzberg SL. Kraken: ultrafast metagenomic sequence classification using exact alignments. Genome Biol 2014; 15:R46 [CrossRef][PubMed]
    [Google Scholar]
  37. Lu J, Breitwieser FP, Thielen P, Salzberg SL. Bracken: estimating species abundance in metagenomics data. PeerJ Comput Sci 2017; 3:e104 [CrossRef]
    [Google Scholar]
  38. Xia E, Teo Y-Y, Ong RT-H. SpoTyping: fast and accurate in silico Mycobacterium spoligotyping from sequence reads. Genome Med 2016; 8:19 [CrossRef][PubMed]
    [Google Scholar]
  39. Faksri K, Xia E, Tan JH, Teo Y-Y, Ong RT-H. In silico region of difference (RD) analysis of Mycobacterium tuberculosis complex from sequence reads using RD-Analyzer. BMC Genomics 2016; 17:847 [CrossRef][PubMed]
    [Google Scholar]
  40. Smith NH, Berg S, Dale J, Allen A, Rodriguez S et al. European 1: A globally important clonal complex of Mycobacterium bovis . Infection Genetics and Evolution 2011; 11:1340–1351
    [Google Scholar]
  41. Müller B, Hilty M, Berg S, Garcia-Pelayo MC, Dale J et al. African 1, an epidemiologically important clonal complex of Mycobacterium bovis dominant in Mali, Nigeria, Cameroon, and Chad. J Bacteriol 2009; 191:1951–1960 [CrossRef][PubMed]
    [Google Scholar]
  42. Rodriguez-Campos S, Schürch AC, Dale J, Lohan AJ, Cunha MV et al. European 2--a clonal complex of Mycobacterium bovis dominant in the Iberian Peninsula. Infect Genet Evol 2012; 12:866–872 [CrossRef][PubMed]
    [Google Scholar]
  43. Loiseau C, Menardo F, Aseffa A, Hailu E, Gumi B et al. An African origin for Mycobacterium bovis . Evol Med Public Health 2020; 2020:49–59 [CrossRef][PubMed]
    [Google Scholar]
  44. Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 2009; 25:1754–1760 [CrossRef][PubMed]
    [Google Scholar]
  45. Harris SR, Feil EJ, Holden MTG, Quail MA, Nickerson EK et al. Evolution of MRSA during hospital transmission and intercontinental spread. Science 2010; 327:469–474 [CrossRef][PubMed]
    [Google Scholar]
  46. Price-Carter M, Brauning R, de Lisle GW, Livingstone P, Neill M et al. Whole Genome Sequencing for Determining the Source of Mycobacterium bovis Infections in Livestock Herds and Wildlife in New Zealand. Front Vet Sci 2018; 5:272 [CrossRef][PubMed]
    [Google Scholar]
  47. Page AJ, Taylor B, Delaney AJ, Soares J, Seemann T et al. SNP-sites: rapid efficient extraction of SNPs from multi-FASTA alignments. Microb Genom 2016; 2:e000056 [CrossRef][PubMed]
    [Google Scholar]
  48. Nguyen L-T, Schmidt HA, von Haeseler A, Minh BQ, Nguyen L-T. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol 2015; 32:268–274 [CrossRef][PubMed]
    [Google Scholar]
  49. Letunic I, Bork P. Interactive tree of life (iTOL) V4: recent updates and new developments. Nucleic Acids Res 2019; 47:W256–W259 [CrossRef][PubMed]
    [Google Scholar]
  50. Hauer A, Michelet L, Cochard T, Branger M, Nunez J et al. Accurate phylogenetic relationships among Mycobacterium bovis strains circulating in france based on whole genome sequencing and single nucleotide polymorphism analysis. Front Microbiol 2019; 10:955 [CrossRef][PubMed]
    [Google Scholar]
  51. Guerra-Assuncao JA, Houben R, Crampin AC, Mzembe T, Mallard K et al. Recurrence due to relapse or reinfection with Mycobacterium tuberculosis: a whole-genome sequencing approach in a large, population-based cohort with a high HIV infection prevalence and active follow-up. J Infect Dis 2015; 211:1154–1163 [CrossRef][PubMed]
    [Google Scholar]
  52. Branger M, Hauer A, Michelet L, Karoui C, Cochard T et al. Draft genome sequence of Mycobacterium bovis strain D-10-02315 isolated from wild boar. Genome Announc 2016; 4:e01268-16 [CrossRef][PubMed]
    [Google Scholar]
  53. Malm S, Linguissi LSG, Tekwu EM, Vouvoungui JC, Kohl TA et al. New Mycobacterium tuberculosis Complex Sublineage, Brazzaville, Congo. Emerg Infect Dis 2017; 23:423–429 [CrossRef][PubMed]
    [Google Scholar]
  54. Votintseva AA, Pankhurst LJ, Anson LW, Morgan MR, Gascoyne-Binzi D et al. Mycobacterial DNA extraction for whole-genome sequencing from early positive liquid (MGIT) cultures. J Clin Microbiol 2015; 53:1137–1143 [CrossRef][PubMed]
    [Google Scholar]
  55. Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for illumina sequence data. Bioinformatics 2014; 30:2114–2120 [CrossRef][PubMed]
    [Google Scholar]
  56. Kahle D, Wickham H. ggmap: spatial visualization with ggplot2. R J 2013; 5:144–161 [CrossRef]
    [Google Scholar]
  57. Team RC R: a Language and Environment for Statistical Computing Vienna, Austria: 2013
    [Google Scholar]
  58. contoureR Contouring of Non-Regular three-dimensional data.
  59. Geosphere Spherical trigonometry.
  60. Dray S, Dufour A-B. The ade4 package: Implementing the duality diagram for ecologists. J Stat Softw 2007; 22:1–20 [CrossRef]
    [Google Scholar]
  61. Csardi G, Nepusz T. The igraph software package for complex network research. InterJournal, Complex Systems 2006
    [Google Scholar]
  62. Pedersen T. ggraph: an implementation of grammar of graphics for graphs and networks; 2020
  63. Drummond AJ, Suchard MA, Xie D, Rambaut A. Bayesian phylogenetics with BEAUti and the beast 1.7. Mol Biol Evol 2012; 29:1969–1973 [CrossRef][PubMed]
    [Google Scholar]
  64. Kass RE, Raftery AE. Bayes factors. J Am Stat Assoc 1995; 90:773–795 [CrossRef]
    [Google Scholar]
  65. GC Y, Smith DK, Zhu HC, Guan Y. GGTREE: an R package for visualization and annotation of phylogenetic trees with their covariates and other associated data. Methods Ecol Evol 2017; 8:28–36
    [Google Scholar]
  66. Rieux A, Khatchikian CE. tipdatingbeast: an R package to assist the implementation of phylogenetic tip-dating tests using beast. Mol Ecol Resour 2017; 17:608–613 [CrossRef][PubMed]
    [Google Scholar]
  67. Romha G, Gebru G, Asefa A, Mamo G. Epidemiology of Mycobacterium bovis and Mycobacterium tuberculosis in animals: transmission dynamics and control challenges of zoonotic TB in Ethiopia. Prev Vet Med 2018; 158:1–17 [CrossRef][PubMed]
    [Google Scholar]
  68. Biek R, O'Hare A, Wright D, Mallon T, McCormick C et al. Whole genome sequencing reveals local transmission patterns of Mycobacterium bovis in sympatric cattle and badger populations. PLoS Pathog 2012; 8:e1003008 [CrossRef][PubMed]
    [Google Scholar]
  69. Crispell J, Zadoks RN, Harris SR, Paterson B, Collins DM et al. Using whole genome sequencing to investigate transmission in a multi-host system: bovine tuberculosis in New Zealand. Bmc Genomics 201718
    [Google Scholar]
  70. Walker TM, Ip CLC, Harrell RH, Evans JT, Kapatai G et al. Whole-genome sequencing to delineate Mycobacterium tuberculosis outbreaks: a retrospective observational study. Lancet Infect Dis 2013; 13:137–146 [CrossRef][PubMed]
    [Google Scholar]
  71. Xu Y, Cancino-Munoz I, Torres-Puente M, Villamayor LM, Borras R et al. High-Resolution mapping of tuberculosis transmission: whole genome sequencing and phylogenetic modelling of a cohort from Valencia region, Spain. PLoS Med 2019; 16:e1002961 [CrossRef][PubMed]
    [Google Scholar]
  72. Hatherell HA, Colijn C, Stagg HR, Jackson C, Winter JR et al. Interpreting whole genome sequencing for investigating tuberculosis transmission: a systematic review. BMC Med 2016; 14:21 [CrossRef][PubMed]
    [Google Scholar]
  73. Mekonnen GA, Ameni G, Wood JLN, Berg S et al. ETHICOBOTS consortium Network analysis of dairy cattle movement and associations with bovine tuberculosis spread and control in emerging dairy belts of Ethiopia. BMC Vet Res 2019; 15:262 [CrossRef][PubMed]
    [Google Scholar]
  74. Didelot X, Fraser C, Gardy J, Colijn C. Genomic infectious disease epidemiology in partially sampled and ongoing outbreaks. Mol Biol Evol 2017; 34:msw075–1007 [CrossRef][PubMed]
    [Google Scholar]
  75. Hopkirk CSM The veterinary service of Ethiopia. N Z Vet J 1954
    [Google Scholar]
  76. Ameni G, Aseffa A, Sirak A, Engers H, Young DB et al. Effect of skin testing and segregation on the prevalence of bovine tuberculosis, and molecular typing of Mycobacterium bovis, in Ethiopia. Vet Rec 2007; 161:782–786[PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/mgen/10.1099/mgen.0.000539
Loading
/content/journal/mgen/10.1099/mgen.0.000539
Loading

Data & Media loading...

Supplements

Supplementary material 1

EXCEL

Supplementary material 2

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error