1887

Abstract

complex (Bcc) is an important and virulent pathogen in cystic fibrosis patients. The interactions between this pathogen and the host lung epithelium are being widely investigated but remain to be elucidated. The complex is very versatile and its interactions with the lung epithelial cells are many and varied. The first steps in the interaction are penetration of the mucosal blanket and subsequent adherence to the epithelial cell surface. A range of epithelial receptors have been reported to bind to Bcc. The next step in pathogenesis is the invasion of the lung epithelial cell and also translocation across the epithelium to the serosal side. Furthermore, pathogenesis is mediated by a range of virulence factors that elicit their effects on the epithelial cells. This review outlines these interactions and examines the therapeutic implications of understanding the mechanisms of pathogenesis of this difficult, antibiotic-resistant, opportunistic pathogen.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.47788-0
2009-01-01
2019-10-14
Loading full text...

Full text loading...

/deliver/fulltext/jmm/58/1/1.html?itemId=/content/journal/jmm/10.1099/jmm.0.47788-0&mimeType=html&fmt=ahah

References

  1. Adamo, R., Sokol, S., Soong, G., Gomez, M. I. & Prince, A. ( 2004; ). Pseudomonas aeruginosa flagella activate airway epithelial cells through asialoGM1 and toll-like receptor 2 as well as toll-like receptor 5. Am J Respir Cell Mol Biol 30, 627–634.[CrossRef]
    [Google Scholar]
  2. Adamson, I. Y. & Bowden, D. H. ( 1974; ). The type 2 cell as progenitor of alveolar epithelial regeneration. A cytodynamic study in mice after exposure to oxygen. Lab Invest 30, 35–42.
    [Google Scholar]
  3. Agodi, A., Mahenthiralingam, E., Barchitta, M., Giannino, V., Sciacca, A. & Stefani, S. ( 2001; ). Burkholderia cepacia complex infection in Italian patients with cystic fibrosis: prevalence, epidemiology, and genomovar status. J Clin Microbiol 39, 2891–2896.[CrossRef]
    [Google Scholar]
  4. Baldwin, A., Sokol, P. A., Parkhill, J. & Mahenthiralingam, E. ( 2004; ). The Burkholderia cepacia epidemic strain marker is part of a novel genomic island encoding both virulence and metabolism-associated genes in Burkholderia cenocepacia. Infect Immun 72, 1537–1547.[CrossRef]
    [Google Scholar]
  5. Baldwin, A., Mahenthiralingam, E., Drevinek, P., Vandamme, P., Govan, J. R., Waine, D. J., LiPuma, J. J., Chiarini, L., Dalmastri, C. & other authors ( 2007; ). Environmental Burkholderia cepacia complex isolates in human infections. Emerg Infect Dis 13, 458–461.[CrossRef]
    [Google Scholar]
  6. Bamford, S., Ryley, H. & Jackson, S. K. ( 2007; ). Highly purified lipopolysaccharides from Burkholderia cepacia complex clinical isolates induce inflammatory cytokine responses via TLR4-mediated MAPK signalling pathways and activation of NFkappaB. Cell Microbiol 9, 532–543.[CrossRef]
    [Google Scholar]
  7. Beckman, W. & Lessie, T. G. ( 1979; ). Response of Pseudomonas cepacia to β-lactam antibiotics: utilization of penicillin G as the carbon source. J Bacteriol 140, 1126–1128.
    [Google Scholar]
  8. Bermudez, L. E., Sangari, F. J., Kolonoski, P., Petrofsky, M. & Goodman, J. ( 2002; ). The efficiency of the translocation of Mycobacterium tuberculosis across a bilayer of epithelial and endothelial cells as a model of the alveolar wall is a consequence of transport within mononuclear phagocytes and invasion of alveolar epithelial cells. Infect Immun 70, 140–146.[CrossRef]
    [Google Scholar]
  9. Biddick, R., Spilker, T., Martin, A. & LiPuma, J. J. ( 2003; ). Evidence of transmission of Burkholderia cepacia, Burkholderia multivorans and Burkholderia dolosa among persons with cystic fibrosis. FEMS Microbiol Lett 228, 57–62.[CrossRef]
    [Google Scholar]
  10. Boucher, R. C. ( 2004; ). New concepts of the pathogenesis of cystic fibrosis lung disease. Eur Respir J 23, 146–158.[CrossRef]
    [Google Scholar]
  11. Boucher, R. C. ( 2007; ). Evidence for airway surface dehydration as the initiating event in CF airway disease. J Intern Med 261, 5–16.[CrossRef]
    [Google Scholar]
  12. Bryan, R., Feldman, M., Jawetz, S. C., Rajan, S., DiMango, E., Tang, H. B., Scheffler, L., Speert, D. P. & Prince, A. ( 1999; ). The effects of aerosolized dextran in a mouse model of Pseudomonas aeruginosa pulmonary infection. J Infect Dis 179, 1449–1458.[CrossRef]
    [Google Scholar]
  13. Burkholder, W. ( 1950; ). Sour skin, a bacterial rot of onion bulbs. Phytopathology 64, 468–475.
    [Google Scholar]
  14. Caraher, E., Duff, C., Mullen, T., Mc Keon, S., Murphy, P., Callaghan, M. & McClean, S. ( 2007a; ). Invasion and biofilm formation of Burkholderia dolosa is comparable with Burkholderia cenocepacia and Burkholderia multivorans. J Cyst Fibros 6, 49–56.[CrossRef]
    [Google Scholar]
  15. Caraher, E., Reynolds, G., Murphy, P., McClean, S. & Callaghan, M. ( 2007b; ). Comparison of antibiotic susceptibility of Burkholderia cepacia complex organisms when grown planktonically or as biofilm in vitro. Eur J Clin Microbiol Infect Dis 26, 213–216.[CrossRef]
    [Google Scholar]
  16. Carvalho, A. P., Ventura, G. M., Pereira, C. B., Leao, R. S., Folescu, T. W., Higa, L., Teixeira, L. M., Plotkowski, M. C., Merquior, V. L. & other authors ( 2007; ). Burkholderia cenocepacia, B. multivorans, B. ambifaria and B. vietnamiensis isolates from cystic fibrosis patients have different profiles of exoenzyme production. APMIS 115, 311–318.[CrossRef]
    [Google Scholar]
  17. Chernish, R. N. & Aaron, S. D. ( 2003; ). Approach to resistant gram-negative bacterial pulmonary infections in patients with cystic fibrosis. Curr Opin Pulm Med 9, 509–515.[CrossRef]
    [Google Scholar]
  18. Chiu, C. H., Wong, S., Hancock, R. E. & Speert, D. P. ( 2001; ). Adherence of Burkholderia cepacia to respiratory tract epithelial cells and inhibition with dextrans. Microbiology 147, 2651–2658.
    [Google Scholar]
  19. Chung, J. W. & Speert, D. P. ( 2007; ). Proteomic identification and characterization of bacterial factors associated with Burkholderia cenocepacia survival in a murine host. Microbiology 153, 206–214.[CrossRef]
    [Google Scholar]
  20. Cieri, M. V., Mayer-Hamblett, N., Griffith, A. & Burns, J. L. ( 2002; ). Correlation between an in vitro invasion assay and a murine model of Burkholderia cepacia lung infection. Infect Immun 70, 1081–1086.[CrossRef]
    [Google Scholar]
  21. Coenye, T., Vandamme, P., Govan, J. R. & LiPuma, J. J. ( 2001; ). Taxonomy and identification of the Burkholderia cepacia complex. J Clin Microbiol 39, 3427–3436.[CrossRef]
    [Google Scholar]
  22. Coenye, T., Vandamme, P., LiPuma, J. J., Govan, J. R. & Mahenthiralingam, E. ( 2003; ). Updated version of the Burkholderia cepacia complex experimental strain panel. J Clin Microbiol 41, 2797–2798.[CrossRef]
    [Google Scholar]
  23. Comolli, J. C., Waite, L. L., Mostov, K. E. & Engel, J. N. ( 1999; ). Pili binding to asialo-GM1 on epithelial cells can mediate cytotoxicity or bacterial internalization by Pseudomonas aeruginosa. Infect Immun 67, 3207–3214.
    [Google Scholar]
  24. Corbett, C. R., Burtnick, M. N., Kooi, C., Woods, D. E. & Sokol, P. A. ( 2003; ). An extracellular zinc metalloprotease gene of Burkholderia cepacia. Microbiology 149, 2263–2271.[CrossRef]
    [Google Scholar]
  25. Courtney, J. M., Dunbar, K. E., McDowell, A., Moore, J. E., Warke, T. J., Stevenson, M. & Elborn, J. S. ( 2004; ). Clinical outcome of Burkholderia cepacia complex infection in cystic fibrosis adults. J Cyst Fibros 3, 93–98.[CrossRef]
    [Google Scholar]
  26. Cunha, M. V., Pinto-de-Oliveira, A., Meirinhos-Soares, L., Salgado, M. J., Melo-Cristino, J., Correia, S., Barreto, C. & Sa-Correia, I. ( 2007; ). Exceptionally high representation of Burkholderia cepacia among the B. cepacia complex isolates recovered from the major Portuguese Cystic Fibrosis Center. J Clin Microbiol 45, 1628–1633.[CrossRef]
    [Google Scholar]
  27. de Bentzmann, S., Roger, P., Dupuit, F., Bajolet-Laudinat, O., Fuchey, C., Plotkowski, M. C. & Puchelle, E. ( 1996; ). Asialo GM1 is a receptor for Pseudomonas aeruginosa adherence to regenerating respiratory epithelial cells. Infect Immun 64, 1582–1588.
    [Google Scholar]
  28. de Bentzmann, S., Polette, M., Zahm, J. M., Hinnrasky, J., Kileztky, C., Bajolet, O., Klossek, J. M., Filloux, A., Lazdunski, A. & other authors ( 2000; ). Pseudomonas aeruginosa virulence factors delay airway epithelial wound repair by altering the actin cytoskeleton and inducing overactivation of epithelial matrix metalloproteinase-2. Lab Invest 80, 209–219.[CrossRef]
    [Google Scholar]
  29. Denker, B. M. & Nigam, S. K. ( 1998; ). Molecular structure and assembly of the tight junction. Am J Physiol 274, F1–F9.
    [Google Scholar]
  30. Duff, C., Murphy, P. G., Callaghan, M. & McClean, S. ( 2006; ). Differences in invasion and translocation of Burkholderia cepacia complex species in polarised lung epithelial cells in vitro. Microb Pathog 41, 183–192.[CrossRef]
    [Google Scholar]
  31. Emam, A., Yu, A. R., Park, H. J., Mahfoud, R., Kus, J., Burrows, L. L. & Lingwood, C. A. ( 2006; ). Laboratory and clinical Pseudomonas aeruginosa strains do not bind glycosphingolipids in vitro or during type IV pili-mediated initial host cell attachment. Microbiology 152, 2789–2799.[CrossRef]
    [Google Scholar]
  32. Evans, M. J., Cabral, L. J., Stephens, R. J. & Freeman, G. ( 1975; ). Transformation of alveolar Type 2 cells to Type 1 cells following exposure to NO2. Exp Mol Pathol 22, 142–150.[CrossRef]
    [Google Scholar]
  33. Faure, R., Shiao, T. C., Lagnoux, D., Giguere, D. & Roy, R. ( 2007; ). En route to a carbohydrate-based vaccine against Burkholderia cepacia. Org Biomol Chem 5, 2704–2708.[CrossRef]
    [Google Scholar]
  34. Festini, F., Buzzetti, R., Bassi, C., Braggion, C., Salvatore, D., Taccetti, G. & Mastella, G. ( 2006; ). Isolation measures for prevention of infection with respiratory pathogens in cystic fibrosis: a systematic review. J Hosp Infect 64, 1–6.[CrossRef]
    [Google Scholar]
  35. Finlay, B. B. & Falkow, S. ( 1997; ). Common themes in microbial pathogenicity revisited. Microbiol Mol Biol Rev 61, 136–169.
    [Google Scholar]
  36. Flannagan, R. S., Aubert, D., Kooi, C., Sokol, P. A. & Valvano, M. A. ( 2007; ). Burkholderia cenocepacia requires a periplasmic HtrA protease for growth under thermal and osmotic stress and for survival in vivo. Infect Immun 75, 1679–1689.[CrossRef]
    [Google Scholar]
  37. Fullner, K. J., Lencer, W. I. & Mekalanos, J. J. ( 2001; ). Vibrio cholerae-induced cellular responses of polarized T84 intestinal epithelial cells are dependent on production of cholera toxin and the RTX toxin. Infect Immun 69, 6310–6317.[CrossRef]
    [Google Scholar]
  38. Ghazal, S. S., Al-Mudaimeegh, K., Al Fakihi, E. M. & Asery, A. T. ( 2006; ). Outbreak of Burkholderia cepacia bacteremia in immunocompetent children caused by contaminated nebulized sulbutamol in Saudi Arabia. Am J Infect Control 34, 394–398.[CrossRef]
    [Google Scholar]
  39. Gilchrist, C. A., Houpt, E., Trapaidze, N., Fei, Z., Crasta, O., Asgharpour, A., Evans, C., Martino-Catt, S., Baba, D. J. & other authors ( 2006; ). Impact of intestinal colonization and invasion on the Entamoeba histolytica transcriptome. Mol Biochem Parasitol 147, 163–176.[CrossRef]
    [Google Scholar]
  40. Gingues, S., Kooi, C., Visser, M. B., Subsin, B. & Sokol, P. A. ( 2005; ). Distribution and expression of the ZmpA metalloprotease in the Burkholderia cepacia complex. J Bacteriol 187, 8247–8255.[CrossRef]
    [Google Scholar]
  41. Glick, M. C., Kothari, V. A., Liu, A., Stoykova, L. I. & Scanlin, T. F. ( 2001; ). Activity of fucosyltransferases and altered glycosylation in cystic fibrosis airway epithelial cells. Biochimie 83, 743–747.[CrossRef]
    [Google Scholar]
  42. Godfrey, R. W. ( 1997; ). Human airway epithelial tight junctions. Microsc Res Tech 38, 488–499.[CrossRef]
    [Google Scholar]
  43. Gotschlich, A., Huber, B., Geisenberger, O., Togl, A., Steidle, A., Riedel, K., Hill, P., Tummler, B., Vandamme, P. & other authors ( 2001; ). Synthesis of multiple N-acylhomoserine lactones is wide-spread among the members of the Burkholderia cepacia complex. Syst Appl Microbiol 24, 1–14.[CrossRef]
    [Google Scholar]
  44. Govan, J. R. & Nelson, J. W. ( 1993; ). Microbiology of cystic fibrosis lung infections: themes and issues. J R Soc Med 86 (Suppl. 20), 11–18.
    [Google Scholar]
  45. Govan, J. R., Brown, A. R. & Jones, A. M. ( 2007; ). Evolving epidemiology of Pseudomonas aeruginosa and the Burkholderia cepacia complex in cystic fibrosis lung infection. Future Microbiol 2, 153–164.[CrossRef]
    [Google Scholar]
  46. Huber, B., Feldmann, F., Kothe, M., Vandamme, P., Wopperer, J., Riedel, K. & Eberl, L. ( 2004; ). Identification of a novel virulence factor in Burkholderia cenocepacia H111 required for efficient slow killing of Caenorhabditis elegans. Infect Immun 72, 7220–7230.[CrossRef]
    [Google Scholar]
  47. Idanpaan-Heikkila, I., Simon, P. M., Zopf, D., Vullo, T., Cahill, P., Sokol, K. & Tuomanen, E. ( 1997; ). Oligosaccharides interfere with the establishment and progression of experimental pneumococcal pneumonia. J Infect Dis 176, 704–712.[CrossRef]
    [Google Scholar]
  48. Isles, A., Maclusky, I., Corey, M., Gold, R., Prober, C., Fleming, P. & Levison, H. ( 1984; ). Pseudomonas cepacia infection in cystic fibrosis: an emerging problem. J Pediatr 104, 206–210.[CrossRef]
    [Google Scholar]
  49. Jepson, M. A., Schlecht, H. B. & Collares-Buzato, C. B. ( 2000; ). Localization of dysfunctional tight junctions in Salmonella enterica serovar Typhimurium-infected epithelial layers. Infect Immun 68, 7202–7208.[CrossRef]
    [Google Scholar]
  50. Kalish, L. A., Waltz, D. A., Dovey, M., Potter-Bynoe, G., McAdam, A. J., LiPuma, J. J., Gerard, C. & Goldmann, D. ( 2006; ). Impact of Burkholderia dolosa on lung function and survival in cystic fibrosis. Am J Respir Crit Care Med 173, 421–425.[CrossRef]
    [Google Scholar]
  51. Kim, J. Y., Sajjan, U. S., Krasan, G. P. & LiPuma, J. J. ( 2005; ). Disruption of tight junctions during traversal of the respiratory epithelium by Burkholderia cenocepacia. Infect Immun 73, 7107–7112.[CrossRef]
    [Google Scholar]
  52. Kooi, C., Subsin, B., Chen, R., Pohorelic, B. & Sokol, P. A. ( 2006; ). Burkholderia cenocepacia ZmpB is a broad-specificity zinc metalloprotease involved in virulence. Infect Immun 74, 4083–4093.[CrossRef]
    [Google Scholar]
  53. Krivan, H. C., Ginsburg, V. & Roberts, D. D. ( 1988; ). Pseudomonas aeruginosa and Pseudomonas cepacia isolated from cystic fibrosis patients bind specifically to gangliotetraosylceramide (asialo GM1) and gangliotriaosylceramide (asialo GM2). Arch Biochem Biophys 260, 493–496.[CrossRef]
    [Google Scholar]
  54. LiPuma, J. J., Dasen, S. E., Nielson, D. W., Stern, R. C. & Stull, T. L. ( 1990; ). Person-to-person transmission of Pseudomonas cepacia between patients with cystic fibrosis. Lancet 336, 1094–1096.[CrossRef]
    [Google Scholar]
  55. Lopez-Boado, Y. S., Wilson, C. L. & Parks, W. C. ( 2001; ). Regulation of matrilysin expression in airway epithelial cells by Pseudomonas aeruginosa flagellin. J Biol Chem 276, 41417–41423.[CrossRef]
    [Google Scholar]
  56. Mahenthiralingam, E., Urban, T. A. & Goldberg, J. B. ( 2005; ). The multifarious, multireplicon Burkholderia cepacia complex. Nat Rev Microbiol 3, 144–156.[CrossRef]
    [Google Scholar]
  57. Mahenthiralingam, E., Baldwin, A., Drevinek, P., Vanlaere, E., Vandamme, P., LiPuma, J. J. & Dowson, C. G. ( 2006; ). Multilocus sequence typing breathes life into a microbial metagenome. PLoS One 1, e17 [CrossRef]
    [Google Scholar]
  58. Maher, S., Brayden, D. J., Feighery, L. & McClean, S. ( 2008; ). Cracking the junction: update on the progress of gastrointestinal absorption enhancement in the delivery of poorly absorbed drugs. Crit Rev Ther Drug Carrier Syst 25, 117–168.[CrossRef]
    [Google Scholar]
  59. Maloney, K. E. & Valvano, M. A. ( 2006; ). The mgtC gene of Burkholderia cenocepacia is required for growth under magnesium limitation conditions and intracellular survival in macrophages. Infect Immun 74, 5477–5486.[CrossRef]
    [Google Scholar]
  60. Markey, K. M., Glendinning, K. J., Morgan, J. A., Hart, C. A. & Winstanley, C. ( 2006; ). Caenorhabditis elegans killing assay as an infection model to study the role of type III secretion in Burkholderia cenocepacia. J Med Microbiol 55, 967–969.[CrossRef]
    [Google Scholar]
  61. Martin, D. W. & Mohr, C. D. ( 2000; ). Invasion and intracellular survival of Burkholderia cepacia. Infect Immun 68, 24–29.[CrossRef]
    [Google Scholar]
  62. McDowell, A., Mahenthiralingam, E., Dunbar, K. E., Moore, J. E., Crowe, M. & Elborn, J. S. ( 2004; ). Epidemiology of Burkholderia cepacia complex species recovered from cystic fibrosis patients: issues related to patient segregation. J Med Microbiol 53, 663–668.[CrossRef]
    [Google Scholar]
  63. McKevitt, A. I. & Woods, D. E. ( 1984; ). Characterization of Pseudomonas cepacia isolates from patients with cystic fibrosis. J Clin Microbiol 19, 291–293.
    [Google Scholar]
  64. Miskin, J. E., Farrell, A. M., Cunliffe, W. J. & Holland, K. T. ( 1997; ). Propionibacterium acnes, a resident of lipid-rich human skin, produces a 33 kDa extracellular lipase encoded by gehA. Microbiology 143, 1745–1755.[CrossRef]
    [Google Scholar]
  65. Mitchell, E., Houles, C., Sudakevitz, D., Wimmerova, M., Gautier, C., Perez, S., Wu, A. M., Gilboa-Garber, N. & Imberty, A. ( 2002; ). Structural basis for oligosaccharide-mediated adhesion of Pseudomonas aeruginosa in the lungs of cystic fibrosis patients. Nat Struct Biol 9, 918–921.[CrossRef]
    [Google Scholar]
  66. Molofsky, A. B. & Swanson, M. S. ( 2004; ). Differentiate to thrive: lessons from the Legionella pneumophila life cycle. Mol Microbiol 53, 29–40.[CrossRef]
    [Google Scholar]
  67. Mullen, T., Markey, K., Murphy, P., McClean, S. & Callaghan, M. ( 2007; ). Role of lipase in Burkholderia cepacia complex (Bcc) invasion of lung epithelial cells. Eur J Clin Microbiol Infect Dis 26, 869–877.[CrossRef]
    [Google Scholar]
  68. Noah, T. L., Black, H. R., Cheng, P. W., Wood, R. E. & Leigh, M. W. ( 1997; ). Nasal and bronchoalveolar lavage fluid cytokines in early cystic fibrosis. J Infect Dis 175, 638–647.[CrossRef]
    [Google Scholar]
  69. Parke, J. L. & Gurian-Sherman, D. ( 2001; ). Diversity of the Burkholderia cepacia complex and implications for risk assessment of biological control strains. Annu Rev Phytopathol 39, 225–258.[CrossRef]
    [Google Scholar]
  70. Pedersen, L. L., Radulic, M., Doric, M. & Abu Kwaik, Y. ( 2001; ). HtrA homologue of Legionella pneumophila: an indispensable element for intracellular infection of mammalian but not protozoan cells. Infect Immun 69, 2569–2579.[CrossRef]
    [Google Scholar]
  71. Piotrowski, J., Czajkowski, A., Yotsumoto, F., Slomiany, A. & Slomiany, B. L. ( 1994; ). Sulglycotide effect on the proteolytic and lipolytic activities of Helicobacter pylori toward gastric mucus. Am J Gastroenterol 89, 232–236.
    [Google Scholar]
  72. Plotkowski, M. C., de Bentzmann, S., Pereira, S. H., Zahm, J. M., Bajolet-Laudinat, O., Roger, P. & Puchelle, E. ( 1999; ). Pseudomonas aeruginosa internalization by human epithelial respiratory cells depends on cell differentiation, polarity, and junctional complex integrity. Am J Respir Cell Mol Biol 20, 880–890.[CrossRef]
    [Google Scholar]
  73. Reddi, K., Phagoo, S. B., Anderson, K. D. & Warburton, D. ( 2003; ). Burkholderia cepacia-induced IL-8 gene expression in an alveolar epithelial cell line: signaling through CD14 and mitogen-activated protein kinase. Pediatr Res 54, 297–305.[CrossRef]
    [Google Scholar]
  74. Rhim, A. D., Kothari, V. A., Park, P. J., Mulberg, A. E., Glick, M. C. & Scanlin, T. F. ( 2000; ). Terminal glycosylation of cystic fibrosis airway epithelial cells. Glycoconj J 17, 385–391.[CrossRef]
    [Google Scholar]
  75. Riethmuller, J., Riehle, A., Grassme, H. & Gulbins, E. ( 2006; ). Membrane rafts in host-pathogen interactions. Biochim Biophys Acta 1758, 2139–2147.[CrossRef]
    [Google Scholar]
  76. Riordan, J. R., Rommens, J. M., Kerem, B., Alon, N., Rozmahel, R., Grzelczak, Z., Zielenski, J., Lok, S., Plavsic, N. & other authors ( 1989; ). Identification of the cystic fibrosis gene: cloning and characterization of complementary DNA. Science 245, 1066–1073.[CrossRef]
    [Google Scholar]
  77. Saiman, L. & Prince, A. ( 1993; ). Pseudomonas aeruginosa pili bind to asialoGM1 which is increased on the surface of cystic fibrosis epithelial cells. J Clin Invest 92, 1875–1880.[CrossRef]
    [Google Scholar]
  78. Saiman, L., Cacalano, G. & Prince, A. ( 1990; ). Pseudomonas cepacia adherence to respiratory epithelial cells is enhanced by Pseudomonas aeruginosa. Infect Immun 58, 2578–2584.
    [Google Scholar]
  79. Sajjan, U. S., Corey, M., Karmali, M. A. & Forstner, J. F. ( 1992; ). Binding of Pseudomonas cepacia to normal human intestinal mucin and respiratory mucin from patients with cystic fibrosis. J Clin Invest 89, 648–656.[CrossRef]
    [Google Scholar]
  80. Sajjan, U., Wu, Y., Kent, G. & Forstner, J. ( 2000; ). Preferential adherence of cable-piliated Burkholderia cepacia to respiratory epithelia of CF knockout mice and human cystic fibrosis lung explants. J Med Microbiol 49, 875–885.
    [Google Scholar]
  81. Sajjan, U. S., Tran, L. T., Sole, N., Rovaldi, C., Akiyama, A., Friden, P. M., Forstner, J. F. & Rothstein, D. M. ( 2001; ). P-113D, an antimicrobial peptide active against Pseudomonas aeruginosa, retains activity in the presence of sputum from cystic fibrosis patients. Antimicrob Agents Chemother 45, 3437–3444.[CrossRef]
    [Google Scholar]
  82. Sajjan, U., Ackerley, C. & Forstner, J. ( 2002; ). Interaction of cblA/adhesin-positive Burkholderia cepacia with squamous epithelium. Cell Microbiol 4, 73–86.[CrossRef]
    [Google Scholar]
  83. Sajjan, U., Keshavjee, S. & Forstner, J. ( 2004a; ). Responses of well-differentiated airway epithelial cell cultures from healthy donors and patients with cystic fibrosis to Burkholderia cenocepacia infection. Infect Immun 72, 4188–4199.[CrossRef]
    [Google Scholar]
  84. Sajjan, U., Moreira, J., Liu, M., Humar, A., Chaparro, C., Forstner, J. & Keshavjee, S. ( 2004b; ). A novel model to study bacterial adherence to the transplanted airway: inhibition of Burkholderia cepacia adherence to human airway by dextran and xylitol. J Heart Lung Transplant 23, 1382–1391.[CrossRef]
    [Google Scholar]
  85. Sajjan, U. S., Yang, J. H., Hershenson, M. B. & LiPuma, J. J. ( 2006; ). Intracellular trafficking and replication of Burkholderia cenocepacia in human cystic fibrosis airway epithelial cells. Cell Microbiol 8, 1456–1466.[CrossRef]
    [Google Scholar]
  86. Sajjan, U. S., Hershenson, M. B., Forstner, J. F. & LiPuma, J. J. ( 2008; ). Burkholderia cenocepacia ET12 strain activates TNFR1 signalling in cystic fibrosis airway epithelial cells. Cell Microbiol 10, 188–201.
    [Google Scholar]
  87. Samuel, J. E., Perera, L. P., Ward, S., O'Brien, A. D., Ginsburg, V. & Krivan, H. C. ( 1990; ). Comparison of the glycolipid receptor specificities of Shiga-like toxin type II and Shiga-like toxin type II variants. Infect Immun 58, 611–618.
    [Google Scholar]
  88. Schroeder, T. H., Zaidi, T. & Pier, G. B. ( 2001; ). Lack of adherence of clinical isolates of Pseudomonas aeruginosa to asialo-GM(1) on epithelial cells. Infect Immun 69, 719–729.[CrossRef]
    [Google Scholar]
  89. Schwab, U., Leigh, M., Ribeiro, C., Yankaskas, J., Burns, K., Gilligan, P., Sokol, P. & Boucher, R. ( 2002; ). Patterns of epithelial cell invasion by different species of the Burkholderia cepacia complex in well-differentiated human airway epithelia. Infect Immun 70, 4547–4555.[CrossRef]
    [Google Scholar]
  90. Schwab, U. E., Ribeiro, C. M., Neubauer, H. & Boucher, R. C. ( 2003; ). Role of actin filament network in Burkholderia multivorans invasion in well-differentiated human airway epithelia. Infect Immun 71, 6607–6609.[CrossRef]
    [Google Scholar]
  91. Seed, K. D. & Dennis, J. J. ( 2008; ). Development of Galleria mellonella as an alternative infection model for the Burkholderia cepacia complex. Infect Immun 76, 1267–1275.[CrossRef]
    [Google Scholar]
  92. Silipo, A., Molinaro, A., Ierano, T., De Soyza, A., Sturiale, L., Garozzo, D., Aldridge, C., Corris, P. A., Khan, C. M. & other authors ( 2007; ). The complete structure and pro-inflammatory activity of the lipooligosaccharide of the highly epidemic and virulent gram-negative bacterium Burkholderia cenocepacia ET-12 (strain J2315). Chemistry 13, 3501–3511.[CrossRef]
    [Google Scholar]
  93. Simonovic, I., Arpin, M., Koutsouris, A., Falk-Krzesinski, H. J. & Hecht, G. ( 2001; ). Enteropathogenic Escherichia coli activates ezrin, which participates in disruption of tight junction barrier function. Infect Immun 69, 5679–5688.[CrossRef]
    [Google Scholar]
  94. Sokol, P. A., Kooi, C., Hodges, R. S., Cachia, P. & Woods, D. E. ( 2000; ). Immunization with a Pseudomonas aeruginosa elastase peptide reduces severity of experimental lung infections due to P. aeruginosa or Burkholderia cepacia. J Infect Dis 181, 1682–1692.[CrossRef]
    [Google Scholar]
  95. Soong, G., Reddy, B., Sokol, S., Adamo, R. & Prince, A. ( 2004; ). TLR2 is mobilized into an apical lipid raft receptor complex to signal infection in airway epithelial cells. J Clin Invest 113, 1482–1489.[CrossRef]
    [Google Scholar]
  96. Sousa, S. A., Ulrich, M., Bragonzi, A., Burke, M., Worlitzsch, D., Leitao, J. H., Meisner, C., Eberl, L., Sa-Correia, I. & other authors ( 2007; ). Virulence of Burkholderia cepacia complex strains in gp91(phox−/−) mice. Cell Microbiol 9, 2817–2825.[CrossRef]
    [Google Scholar]
  97. Stapleton, A. E., Stroud, M. R., Hakomori, S. I. & Stamm, W. E. ( 1998; ). The globoseries glycosphingolipid sialosyl galactosyl globoside is found in urinary tract tissues and is a preferred binding receptor in vitro for uropathogenic Escherichia coli expressing pap-encoded adhesins. Infect Immun 66, 3856–3861.
    [Google Scholar]
  98. Sylvester, F. A., Sajjan, U. S. & Forstner, J. F. ( 1996; ). Burkholderia (basonym Pseudomonas) cepacia binding to lipid receptors. Infect Immun 64, 1420–1425.
    [Google Scholar]
  99. Taylor, K., McCullough, B., Clarke, D. J., Langley, R. J., Pechenick, T., Hill, A., Campopiano, D. J., Barran, P. E., Dorin, J. R. & other authors ( 2007; ). Covalent dimer species of β-defensin Defr1 display potent antimicrobial activity against multidrug-resistant bacterial pathogens. Antimicrob Agents Chemother 51, 1719–1724.[CrossRef]
    [Google Scholar]
  100. Teichgraber, V., Ulrich, M., Endlich, N., Riethmuller, J., Wilker, B., De Oliveira-Munding, C. C., van Heeckeren, A. M., Barr, M. L., von Kurthy, G. & other authors ( 2008; ). Ceramide accumulation mediates inflammation, cell death and infection susceptibility in cystic fibrosis. Nat Med 14, 382–391.[CrossRef]
    [Google Scholar]
  101. Thomas, R. & Brooks, T. ( 2004; ). Common oligosaccharide moieties inhibit the adherence of typical and atypical respiratory pathogens. J Med Microbiol 53, 833–840.[CrossRef]
    [Google Scholar]
  102. Tomich, M., Herfst, C. A., Golden, J. W. & Mohr, C. D. ( 2002; ). Role of flagella in host cell invasion by Burkholderia cepacia. Infect Immun 70, 1799–1806.[CrossRef]
    [Google Scholar]
  103. Urban, T. A., Goldberg, J. B., Forstner, J. F. & Sajjan, U. S. ( 2005; ). Cable pili and the 22-kilodalton adhesin are required for Burkholderia cenocepacia binding to and transmigration across the squamous epithelium. Infect Immun 73, 5426–5437.[CrossRef]
    [Google Scholar]
  104. Vanlaere, E., LiPuma, J. J., Baldwin, A., Henry, D., De Brandt, E., Mahenthiralingam, E., Speert, D., Dowson, C. & Vandamme, P. ( 2008; ). Burkholderia latens sp. nov., Burkholderia diffusa sp. nov., Burkholderia arboris sp. nov., Burkholderia seminalis sp. nov. and Burkholderia metallica sp. nov., novel species within the Burkholderia cepacia complex. Int J Syst Evol Microbiol 58, 1580–1590.[CrossRef]
    [Google Scholar]
  105. Vial, L., Groleau, M.-C., Dekimpe, V. & Deziel, E. ( 2007; ). Burkholderia diversity and versatility: an inventory of the extracellular products. J Microbiol Biotechnol 17, 1407–1429.
    [Google Scholar]
  106. Weingart, C. L. & Hooke, A. M. ( 1999; ). Regulation of expression of the nonhemolytic phospholipase C of Burkholderia cepacia. Curr Microbiol 39, 336–341.[CrossRef]
    [Google Scholar]
  107. Whitby, P. W., Vanwagoner, T. M., Springer, J. M., Morton, D. J., Seale, T. W. & Stull, T. L. ( 2006; ). Burkholderia cenocepacia utilizes ferritin as an iron source. J Med Microbiol 55, 661–668.[CrossRef]
    [Google Scholar]
  108. Wilson, R. L., Brown, L. L., Kirkwood-Watts, D., Warren, T. K., Lund, S. A., King, D. S., Jones, K. F. & Hruby, D. E. ( 2006; ). Listeria monocytogenes 10403S HtrA is necessary for resistance to cellular stress and virulence. Infect Immun 74, 765–768.[CrossRef]
    [Google Scholar]
  109. Winton, H. L., Wan, H., Cannell, M. B., Gruenert, D. C., Thompson, P. J., Garrod, D. R., Stewart, G. A. & Robinson, C. ( 1998; ). Cell lines of pulmonary and non-pulmonary origin as tools to study the effects of house dust mite proteinases on the regulation of epithelial permeability. Clin Exp Allergy 28, 1273–1285.[CrossRef]
    [Google Scholar]
  110. Woods, C. W., Bressler, A. M., LiPuma, J. J., Alexander, B. D., Clements, D. A., Weber, D. J., Moore, C. M., Reller, L. B. & Kaye, K. S. ( 2004; ). Virulence associated with outbreak-related strains of Burkholderia cepacia complex among a cohort of patients with bacteremia. Clin Infect Dis 38, 1243–1250.[CrossRef]
    [Google Scholar]
  111. Xia, B., Royall, J. A., Damera, G., Sachdev, G. P. & Cummings, R. D. ( 2005; ). Altered O-glycosylation and sulfation of airway mucins associated with cystic fibrosis. Glycobiology 15, 747–775.[CrossRef]
    [Google Scholar]
  112. Zuelzer, W. W. & Newton, W. A. J. ( 1949; ). The pathogenesis of fibrocystic disease of the pancreas. A study of 36 cases with special reference to the pulmonary lesions. Pediatrics 4, 53–69.
    [Google Scholar]
  113. Zulianello, L., Canard, C., Kohler, T., Caille, D., Lacroix, J. S. & Meda, P. ( 2006; ). Rhamnolipids are virulence factors that promote early infiltration of primary human airway epithelia by Pseudomonas aeruginosa. Infect Immun 74, 3134–3147.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.47788-0
Loading
/content/journal/jmm/10.1099/jmm.0.47788-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error