1887

Abstract

toxin synthesis is growth phase-dependent and is regulated by various environmental signals. The toxin genes and are located in a pathogenicity locus, which also includes three accessory genes, , and . TcdR has been shown to act as an alternative factor that mediates positive regulation of both the toxin genes and its own gene. The , and genes are transcribed during the stationary growth phase. The gene, however, is expressed during exponential phase. This expression pattern suggested that TcdC may act as a negative regulator of toxin gene expression. TcdC is a small acidic protein without any conserved DNA-binding motif. It is able to form dimers and its N-terminal region includes a putative transmembrane domain. Genetic and biochemical evidence showed that TcdC negatively regulates toxin synthesis by interfering with the ability of TcdR-containing RNA polymerase to recognize the and promoters. In addition, the NAP1/027 epidemic strains that produce higher levels of toxins have mutations in . Interestingly, a frameshift mutation at position 117 of the coding sequence seems to be, at least in part, responsible for the hypertoxigenicity phenotype of these epidemic strains.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.47775-0
2008-06-01
2019-09-18
Loading full text...

Full text loading...

/deliver/fulltext/jmm/57/6/685.html?itemId=/content/journal/jmm/10.1099/jmm.0.47775-0&mimeType=html&fmt=ahah

References

  1. Ades, S. E. ( 2004; ). Control of the alternative sigma factor sigmaE in Escherichia coli. Curr Opin Microbiol 7, 157–162.[CrossRef]
    [Google Scholar]
  2. Akerlund, T., Svenungsson, B., Lagergren, A. & Burman, L. G. ( 2006; ). Correlation of disease severity with fecal toxin levels in patients with Clostridium difficile-associated diarrhea and distribution of PCR ribotypes and toxin yields in vitro of corresponding isolates. J Clin Microbiol 44, 353–358.[CrossRef]
    [Google Scholar]
  3. Borriello, S. P., Ketley, J. M., Mitchell, T. J., Barclay, F. E., Welch, A. R., Price, A. B. & Stephen, J. ( 1987; ). Clostridium difficile – a spectrum of virulence and analysis of putative virulence determinants in the hamster model of antibiotic-associated colitis. J Med Microbiol 24, 53–64.[CrossRef]
    [Google Scholar]
  4. Braun, V., Hundsberger, T., Leukel, P., Sauerborn, M. & von Eichel-Streiber, C. ( 1996; ). Definition of the single integration site of the pathogenicity locus in Clostridium difficile. Gene 181, 29–38.[CrossRef]
    [Google Scholar]
  5. Brown, K. L. & Hughes, K. T. ( 1995; ). The role of anti-sigma factors in gene regulation. Mol Microbiol 16, 397–404.[CrossRef]
    [Google Scholar]
  6. Dineen, S. S., Villapakkam, A. C., Nordman, J. T. & Sonenshein, A. L. ( 2007; ). Repression of Clostridium difficile toxin gene expression by CodY. Mol Microbiol 66, 206–219.[CrossRef]
    [Google Scholar]
  7. Dupuy, B. & Sonenshein, A. L. ( 1998; ). Regulated transcription of Clostridium difficile toxin genes. Mol Microbiol 27, 107–120.[CrossRef]
    [Google Scholar]
  8. Dupuy, B., Mani, N., Katayama, S. & Sonenshein, A. L. ( 2005; ). Transcription activation of a UV-inducible Clostridium perfringens bacteriocin gene by a novel sigma factor. Mol Microbiol 55, 1196–1206.
    [Google Scholar]
  9. Geszvain, K. & Landick, R. ( 2005; ). The structure of bacterial RNA polymerase. http://www.bact.wisc.edu/landick/
  10. Govind, R., Vediyappan, G., Rolfe, R. D. & Fralick, J. A. ( 2006; ). Evidence that Clostridium difficile TcdC is a membrane-associated protein. J Bacteriol 188, 3716–3720.[CrossRef]
    [Google Scholar]
  11. Haslam, S. C., Ketley, J. M., Mitchell, T. J., Stephen, J., Burdon, D. W. & Candy, D. C. ( 1986; ). Growth of Clostridium difficile and production of toxins A and B in complex and defined media. J Med Microbiol 21, 293–297.[CrossRef]
    [Google Scholar]
  12. Helmann, J. D. ( 1999; ). Anti-sigma factors. Curr Opin Microbiol 2, 135–141.[CrossRef]
    [Google Scholar]
  13. Honda, T., Hernadez, I., Katoh, T. & Miwatani, T. ( 1983; ). Stimulation of enterotoxin production of Clostridium difficile by antibiotics. Lancet 1, 655
    [Google Scholar]
  14. Hundsberger, T., Braun, V., Weidmann, M., Leukel, P., Sauerborn, M. & von Eichel-Streiber, C. ( 1997; ). Transcription analysis of the genes tcdA-E of the pathogenicity locus of Clostridium difficile. Eur J Biochem 244, 735–742.[CrossRef]
    [Google Scholar]
  15. Karlinsey, J. E., Tanaka, S., Bettenworth, V., Yamaguchi, S., Boos, W., Aizawa, S. I. & Hughes, K. T. ( 2000; ). Completion of the hook-basal body complex of the Salmonella typhimurium flagellum is coupled to FlgM secretion and fliC transcription. Mol Microbiol 37, 1220–1231.[CrossRef]
    [Google Scholar]
  16. Karlsson, S., Burman, L. G. & Akerlund, T. ( 1999; ). Suppression of toxin production in Clostridium difficile VPI 10463 by amino acids. Microbiology 145, 1683–1693.[CrossRef]
    [Google Scholar]
  17. Karlsson, S., Lindberg, A., Norin, E., Burman, L. G. & Akerlund, T. ( 2000; ). Toxins, butyric acid, and other short-chain fatty acids are coordinately expressed and down-regulated by cysteine in Clostridium difficile. Infect Immun 68, 5881–5888.[CrossRef]
    [Google Scholar]
  18. Karlsson, S., Dupuy, B., Mukherjee, K., Norin, E., Burman, L. G. & Akerlund, T. ( 2003; ). Expression of Clostridium difficile toxins A and B and their sigma factor TcdD is controlled by temperature. Infect Immun 71, 1784–1793.[CrossRef]
    [Google Scholar]
  19. Kyne, L., Warny, M., Qamar, A. & Kelly, C. P. ( 2000; ). Asymptomatic carriage of Clostridium difficile and serum levels of IgG antibody against toxin A. N Engl J Med 342, 390–397.[CrossRef]
    [Google Scholar]
  20. Kyne, L., Warny, M., Qamar, A. & Kelly, C. P. ( 2001; ). Association between antibody response to toxin A and protection against recurrent Clostridium difficile diarrhoea. Lancet 357, 189–193.[CrossRef]
    [Google Scholar]
  21. Lyerly, D. M., Krivan, H. C. & Wilkins, T. D. ( 1988; ). Clostridium difficile: its disease and toxins. Clin Microbiol Rev 1, 1–18.
    [Google Scholar]
  22. MacCannell, D. R., Louie, T. J., Gregson, D. B., Laverdiere, M., Labbe, A.-C., Laing, F. & Henwick, S. ( 2006; ). Molecular analysis of Clostridium difficile PCR ribotype 027 isolates from Eastern and Western Canada. J Clin Microbiol 44, 2147–2152.[CrossRef]
    [Google Scholar]
  23. Mahe, S., Corthier, G. & Dubos, F. ( 1987; ). Effect of various diets on toxin production by two strains of Clostridium difficile in gnotobiotic mice. Infect Immun 55, 1801–1805.
    [Google Scholar]
  24. Mani, N. & Dupuy, B. ( 2001; ). Regulation of toxin synthesis in Clostridium difficile by an alternative RNA polymerase sigma factor. Proc Natl Acad Sci U S A 98, 5844–5849.[CrossRef]
    [Google Scholar]
  25. Mani, N., Lyras, D., Barroso, L., Howarth, P., Wilkins, T., Rood, J. I., Sonenshein, A. L. & Dupuy, B. ( 2002; ). Environmental response and autoregulation of Clostridium difficile TxeR, a sigma factor for toxin gene expression. J Bacteriol 184, 5971–5978.[CrossRef]
    [Google Scholar]
  26. Matamouros, S., England, P. & Dupuy, B. ( 2007; ). Clostridium difficile toxin expression is inhibited by the novel regulator TcdC. Mol Microbiol 64, 1274–1288.[CrossRef]
    [Google Scholar]
  27. McDonald, L. C., Killgore, G. E., Thompson, A., Owens, R. C., Jr, Kazakova, S. V., Sambol, S. P., Johnson, S. & Gerding, D. N. ( 2005; ). An epidemic, toxin gene-variant strain of Clostridium difficile. N Engl J Med 353, 2433–2441.[CrossRef]
    [Google Scholar]
  28. McFarland, L. V., Elmer, G. W., Stamm, W. E. & Mulligan, M. E. ( 1991; ). Correlation of immunoblot type, enterotoxin production, and cytotoxin production with clinical manifestations of Clostridium difficile infection in a cohort of hospitalized patients. Infect Immun 59, 2456–2462.
    [Google Scholar]
  29. Minakhin, L. & Severinov, K. ( 2005; ). Transcription regulation by bacteriophage T4 AsiA. Protein Expr Purif 41, 1–8.[CrossRef]
    [Google Scholar]
  30. Moncrief, J. S., Barroso, L. A. & Wilkins, T. D. ( 1997; ). Positive regulation of Clostridium difficile toxins. Infect Immun 65, 1105–1108.
    [Google Scholar]
  31. Nakamura, S., Mikawa, M., Tanabe, N., Yamakawa, K. & Nishida, S. ( 1982; ). Effect of clindamycin on cytotoxin production by Clostridium difficile. Microbiol Immunol 26, 985–992.[CrossRef]
    [Google Scholar]
  32. Onderdonk, A. B., Lowe, B. R. & Bartlett, J. G. ( 1979; ). Effect of environmental stress on Clostridium difficile toxin levels during continuous cultivation. Appl Environ Microbiol 38, 637–641.
    [Google Scholar]
  33. Pepin, J., Valiquette, L. & Cossette, B. ( 2005; ). Mortality attributable to nosocomial Clostridium difficile-associated disease during an epidemic caused by a hypervirulent strain in Quebec. CMAJ 173, 1037–1042.[CrossRef]
    [Google Scholar]
  34. Raffestin, S., Dupuy, B., Marvaud, J. C. & Popoff, M. R. ( 2005; ). BotR/A and TetR are alternative RNA polymerase sigma factors controlling the expression of the neurotoxin and associated protein genes in Clostridium botulinum type A and Clostridium tetani. Mol Microbiol 55, 235–249.
    [Google Scholar]
  35. Slack, F. J., Serror, P., Joyce, E. & Sonenshein, A. L. ( 1995; ). A gene required for nutritional repression of the Bacillus subtilis dipeptide permease operon. Mol Microbiol 15, 689–702.
    [Google Scholar]
  36. Spigaglia, P. & Mastrantonio, P. ( 2002; ). Molecular analysis of the pathogenicity locus and polymorphism in the putative negative regulator of toxin production (TcdC) among Clostridium difficile clinical isolates. J Clin Microbiol 40, 3470–3475.[CrossRef]
    [Google Scholar]
  37. Tan, K. S., Wee, B. Y. & Song, K. P. ( 2001; ). Evidence for holin function of tcdE gene in the pathogenicity of Clostridium difficile. J Med Microbiol 50, 613–619.
    [Google Scholar]
  38. von Eichel-Streiber, C., Laufenberg-Feldmann, R., Sartingen, S., Schulze, J. & Sauerborn, M. ( 1992; ). Comparative sequence analysis of the Clostridium difficile toxins A and B. Mol Gen Genet 233, 260–268.[CrossRef]
    [Google Scholar]
  39. Ward, P. B. & Young, G. P. ( 1997; ). Dynamics of Clostridium difficile infection. Control using diet. Adv Exp Med Biol 412, 63–75.
    [Google Scholar]
  40. Warny, M., Vaerman, J. P., Avesani, V. & Delmee, M. ( 1994; ). Human antibody response to Clostridium difficile toxin A in relation to clinical course of infection. Infect Immun 62, 384–389.
    [Google Scholar]
  41. Warny, M., Pepin, J., Fang, A., Killgore, G., Thompson, A., Brazier, J., Frost, E. & McDonald, L. C. ( 2005; ). Toxin production by an emerging strain of Clostridium difficile associated with outbreaks of severe disease in North America and Europe. Lancet 366, 1079–1084.[CrossRef]
    [Google Scholar]
  42. Wren, B., Heard, S. R. & Tabaqchali, S. ( 1987; ). Association between production of toxins A and B and types of Clostridium difficile. J Clin Pathol 40, 1397–1401.[CrossRef]
    [Google Scholar]
  43. Yamakawa, K., Karasawa, T., Ikoma, S. & Nakamura, S. ( 1996; ). Enhancement of Clostridium difficile toxin production in biotin-limited conditions. J Med Microbiol 44, 111–114.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.47775-0
Loading
/content/journal/jmm/10.1099/jmm.0.47775-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error