1887

Abstract

is an important nosocomial pathogen, resulting in antibiotic-associated disease ranging from mild diarrhoea to the life-threatening pseudomembranous colitis. Upon antibiotic exposure, it is believed that the normal bowel microflora of patients is disrupted, allowing to proliferate. Significantly, is among only a few bacteria able to ferment tyrosine to -cresol, a phenolic compound that is toxic to other microbes via its ability to interfere with metabolism. Therefore, the ability of different strains to produce and tolerate -cresol may play an important role in the development and severity of -associated disease. In this study, it was demonstrated that two hypervirulent 027 strains (Stoke Mandeville and BI-16) are more tolerant to -cresol than other strains including 630, CF4 and CD196. Surprising, it was shown that also has a high tolerance to -cresol, suggesting an overlap in the tolerance pathways in these clostridial species.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.47744-0
2008-06-01
2020-07-02
Loading full text...

Full text loading...

/deliver/fulltext/jmm/57/6/745.html?itemId=/content/journal/jmm/10.1099/jmm.0.47744-0&mimeType=html&fmt=ahah

References

  1. Bartlett J. G. 1994; Clostridium difficile : history of its role as an enteric pathogen and the current state of knowledge about the organism. Clin Infect Dis 18 (Suppl. 4):S265–S272 [CrossRef]
    [Google Scholar]
  2. Borriello S. P., Wren B. W., Hyde S., Seddon S. V., Sibbons P., Krishna M. M., Tabaqchali S., Manek S., Price A. B. 1992; Molecular, immunological, and biological characterization of a toxin A-negative, toxin B-positive strain of Clostridium difficile . Infect Immun 60:4192–4199
    [Google Scholar]
  3. Depitre C., Delmee M., Avesani V., L'Haridon R., Roels A., Popoff M., Corthier G. 1993; Serogroup F strains of Clostridium difficile produce toxin B but not toxin A. J Med Microbiol 38:434–441 [CrossRef]
    [Google Scholar]
  4. Elsden S. R., Hilton M. G., Waller J. M. 1976; The end products of the metabolism of aromatic amino acids by clostridia. Arch Microbiol 107:283–288 [CrossRef]
    [Google Scholar]
  5. Hafiz S., Oakley C. L. 1976; Clostridium difficile : isolation and characteristics. J Med Microbiol 9:129–135 [CrossRef]
    [Google Scholar]
  6. Johnson S., Gerding D. N. 1998; Clostridium difficile -associated diarrhea. Clin Infect Dis 26:1027–1034 (quiz 1035–1036 [CrossRef]
    [Google Scholar]
  7. Kelly C. P., LaMont J. T. 1998; Clostridium difficile infection. Annu Rev Med 49:375–390 [CrossRef]
    [Google Scholar]
  8. Loo V. G., Poirier L., Miller M. A., Oughton M., Libman M. D., Michaud S., Bourgault A. M., Nguyen T., Frenette C. other authors 2005; A predominantly clonal multi-institutional outbreak of Clostridium difficile -associated diarrhea with high morbidity and mortality. N Engl J Med 353:2442–2449 [CrossRef]
    [Google Scholar]
  9. Lyerly D. M., Phelps C. J., Toth J., Wilkins T. D. 1986; Characterization of toxins A and B of Clostridium difficile with monoclonal antibodies. Infect Immun 54:70–76
    [Google Scholar]
  10. McDonald L. C., Killgore G. E., Thompson A., Owens R. C. Jr, Kazakova S. V., Sambol S. P., Johnson S., Gerding D. N. 2005; An epidemic, toxin gene-variant strain of Clostridium difficile . N Engl J Med 353:2433–2441 [CrossRef]
    [Google Scholar]
  11. Myers G. S. A., Rasko D. A., Cheung J. K., Ravel J., Seshadri R., DeBoy R. T., Ren Q., Varga J., Awad M. M. other authors 2006; Skewed genomic variability in strains of the toxigenic bacterial pathogen, Clostridium perfringens . Genome Res 16:1031–1040 [CrossRef]
    [Google Scholar]
  12. Pépin J., Saheb N., Coulombe M.-A., Alary M.-E., Corriveau M.-P., Authier S., Leblanc M., Rivard G., Bettez M. other authors 2005; Emergence of fluoroquinolones as the predominant risk factor for Clostridium difficile -associated diarrhea: a cohort study during an epidemic in Quebec. Clin Infect Dis 41:1254–1260 [CrossRef]
    [Google Scholar]
  13. Pituch H., van Belkum A., van den Braak N., Obuch-Woszczatynski P., Sawicka-Grzelak A., Verbrugh H., Meisel-Mikolajczyk F., Luczak M. 2003; Clindamycin-resistant, toxin A-negative, toxin B-positive Clostridium difficile strains cause antibiotic-associated diarrhea among children hospitalized in a hematology unit. Clin Microbiol Infect 9:903–904 [CrossRef]
    [Google Scholar]
  14. Riley T. V., Codde J. P., Rouse I. L. 1995; Increased length of hospital stay due to Clostridium difficile associated diarrhoea. Lancet 345:455–456
    [Google Scholar]
  15. Scheline R. R. 1968; Metabolism of phenolic acids by the rat intestinal microflora. Acta Pharmacol Toxicol (Copenh) 26189–205
    [Google Scholar]
  16. Sebaihia M., Wren B. W., Mullany P., Fairweather N. F., Minton N., Stabler R., Thomson N. R., Roberts A. P., Cerdeno-Tarraga A. M. other authors 2006; The multidrug-resistant human pathogen Clostridium difficile has a highly mobile, mosaic genome. Nat Genet 38:779–786 [CrossRef]
    [Google Scholar]
  17. Selmer T., Andrei P. I. 2001; p -Hydroxyphenylacetate decarboxylase from Clostridium difficile . A novel glycyl radical enzyme catalysing the formation of p -cresol. Eur J Biochem 268:1363–1372 [CrossRef]
    [Google Scholar]
  18. Sivsammye G., Sims H. V. 1990; Presumptive identification of Clostridium difficile by detection of p -cresol in prepared peptone yeast glucose broth supplemented with p -hydroxyphenylacetic acid. J Clin Microbiol 28:1851–1853
    [Google Scholar]
  19. Stabler R. A., Gerding D. N., Songer J. G., Drudy D., Brazier J. S., Trinh H. T., Witney A. A., Hinds J., Wren B. W. 2006; Comparative phylogenomics of Clostridium difficile reveals clade specificity and microevolution of hypervirulent strains. J Bacteriol 188:7297–7305 [CrossRef]
    [Google Scholar]
  20. Toyokawa M., Ueda A., Tsukamoto H., Nishi I., Horikawa M., Sunada A., Asari S. 2003; Pseudomembranous colitis caused by toxin A-negative/toxin B-positive variant strain of Clostridium difficile . J Infect Chemother 9:351–354 [CrossRef]
    [Google Scholar]
  21. van den Berg R. J., Claas E. C. J., Oyib D. H., Klaassen C. H. W., Dijkshoorn L., Brazier J. S., Kuijper E. J. 2004; Characterization of toxin A-negative, toxin B-positive Clostridium difficile isolates from outbreaks in different countries by amplified fragment length polymorphism and PCR ribotyping. J Clin Microbiol 42:1035–1041 [CrossRef]
    [Google Scholar]
  22. Warny M., Pepin J., Fang A., Killgore G., Thompson A., Brazier J., Frost E., McDonald L. C. 2005; Toxin production by an emerging strain of Clostridium difficile associated with outbreaks of severe disease in North America and Europe. Lancet 366:1079–1084 [CrossRef]
    [Google Scholar]
  23. Wüst J., Hardegger U. 1983; Transferable resistance to clindamycin, erythromycin, and tetracycline in Clostridium difficile . Antimicrob Agents Chemother 23:784–786 [CrossRef]
    [Google Scholar]
  24. Yokoyama M. T., Carlson J. R. 1981; Production of skatole and para -cresol by a rumen Lactobacillus sp. Appl Environ Microbiol 41:71–76
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.47744-0
Loading
/content/journal/jmm/10.1099/jmm.0.47744-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error