1887

Abstract

is an important nosocomial pathogen, resulting in antibiotic-associated disease ranging from mild diarrhoea to the life-threatening pseudomembranous colitis. Upon antibiotic exposure, it is believed that the normal bowel microflora of patients is disrupted, allowing to proliferate. Significantly, is among only a few bacteria able to ferment tyrosine to -cresol, a phenolic compound that is toxic to other microbes via its ability to interfere with metabolism. Therefore, the ability of different strains to produce and tolerate -cresol may play an important role in the development and severity of -associated disease. In this study, it was demonstrated that two hypervirulent 027 strains (Stoke Mandeville and BI-16) are more tolerant to -cresol than other strains including 630, CF4 and CD196. Surprising, it was shown that also has a high tolerance to -cresol, suggesting an overlap in the tolerance pathways in these clostridial species.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.47744-0
2008-06-01
2019-10-15
Loading full text...

Full text loading...

/deliver/fulltext/jmm/57/6/745.html?itemId=/content/journal/jmm/10.1099/jmm.0.47744-0&mimeType=html&fmt=ahah

References

  1. Bartlett, J. G. ( 1994; ). Clostridium difficile: history of its role as an enteric pathogen and the current state of knowledge about the organism. Clin Infect Dis 18 (Suppl. 4), S265–S272.[CrossRef]
    [Google Scholar]
  2. Borriello, S. P., Wren, B. W., Hyde, S., Seddon, S. V., Sibbons, P., Krishna, M. M., Tabaqchali, S., Manek, S. & Price, A. B. ( 1992; ). Molecular, immunological, and biological characterization of a toxin A-negative, toxin B-positive strain of Clostridium difficile. Infect Immun 60, 4192–4199.
    [Google Scholar]
  3. Depitre, C., Delmee, M., Avesani, V., L'Haridon, R., Roels, A., Popoff, M. & Corthier, G. ( 1993; ). Serogroup F strains of Clostridium difficile produce toxin B but not toxin A. J Med Microbiol 38, 434–441.[CrossRef]
    [Google Scholar]
  4. Elsden, S. R., Hilton, M. G. & Waller, J. M. ( 1976; ). The end products of the metabolism of aromatic amino acids by clostridia. Arch Microbiol 107, 283–288.[CrossRef]
    [Google Scholar]
  5. Hafiz, S. & Oakley, C. L. ( 1976; ). Clostridium difficile: isolation and characteristics. J Med Microbiol 9, 129–135.[CrossRef]
    [Google Scholar]
  6. Johnson, S. & Gerding, D. N. ( 1998; ). Clostridium difficile-associated diarrhea. Clin Infect Dis 26, 1027–1034 (quiz 1035–1036).[CrossRef]
    [Google Scholar]
  7. Kelly, C. P. & LaMont, J. T. ( 1998; ). Clostridium difficile infection. Annu Rev Med 49, 375–390.[CrossRef]
    [Google Scholar]
  8. Loo, V. G., Poirier, L., Miller, M. A., Oughton, M., Libman, M. D., Michaud, S., Bourgault, A. M., Nguyen, T., Frenette, C. & other authors ( 2005; ). A predominantly clonal multi-institutional outbreak of Clostridium difficile-associated diarrhea with high morbidity and mortality. N Engl J Med 353, 2442–2449.[CrossRef]
    [Google Scholar]
  9. Lyerly, D. M., Phelps, C. J., Toth, J. & Wilkins, T. D. ( 1986; ). Characterization of toxins A and B of Clostridium difficile with monoclonal antibodies. Infect Immun 54, 70–76.
    [Google Scholar]
  10. McDonald, L. C., Killgore, G. E., Thompson, A., Owens, R. C., Jr, Kazakova, S. V., Sambol, S. P., Johnson, S. & Gerding, D. N. ( 2005; ). An epidemic, toxin gene-variant strain of Clostridium difficile. N Engl J Med 353, 2433–2441.[CrossRef]
    [Google Scholar]
  11. Myers, G. S. A., Rasko, D. A., Cheung, J. K., Ravel, J., Seshadri, R., DeBoy, R. T., Ren, Q., Varga, J., Awad, M. M. & other authors ( 2006; ). Skewed genomic variability in strains of the toxigenic bacterial pathogen, Clostridium perfringens. Genome Res 16, 1031–1040.[CrossRef]
    [Google Scholar]
  12. Pépin, J., Saheb, N., Coulombe, M.-A., Alary, M.-E., Corriveau, M.-P., Authier, S., Leblanc, M., Rivard, G., Bettez, M. & other authors ( 2005; ). Emergence of fluoroquinolones as the predominant risk factor for Clostridium difficile-associated diarrhea: a cohort study during an epidemic in Quebec. Clin Infect Dis 41, 1254–1260.[CrossRef]
    [Google Scholar]
  13. Pituch, H., van Belkum, A., van den Braak, N., Obuch-Woszczatynski, P., Sawicka-Grzelak, A., Verbrugh, H., Meisel-Mikolajczyk, F. & Luczak, M. ( 2003; ). Clindamycin-resistant, toxin A-negative, toxin B-positive Clostridium difficile strains cause antibiotic-associated diarrhea among children hospitalized in a hematology unit. Clin Microbiol Infect 9, 903–904.[CrossRef]
    [Google Scholar]
  14. Riley, T. V., Codde, J. P. & Rouse, I. L. ( 1995; ). Increased length of hospital stay due to Clostridium difficile associated diarrhoea. Lancet 345, 455–456.
    [Google Scholar]
  15. Scheline, R. R. ( 1968; ). Metabolism of phenolic acids by the rat intestinal microflora. Acta Pharmacol Toxicol (Copenh) 26, 189–205.
    [Google Scholar]
  16. Sebaihia, M., Wren, B. W., Mullany, P., Fairweather, N. F., Minton, N., Stabler, R., Thomson, N. R., Roberts, A. P., Cerdeno-Tarraga, A. M. & other authors ( 2006; ). The multidrug-resistant human pathogen Clostridium difficile has a highly mobile, mosaic genome. Nat Genet 38, 779–786.[CrossRef]
    [Google Scholar]
  17. Selmer, T. & Andrei, P. I. ( 2001; ). p-Hydroxyphenylacetate decarboxylase from Clostridium difficile. A novel glycyl radical enzyme catalysing the formation of p-cresol. Eur J Biochem 268, 1363–1372.[CrossRef]
    [Google Scholar]
  18. Sivsammye, G. & Sims, H. V. ( 1990; ). Presumptive identification of Clostridium difficile by detection of p-cresol in prepared peptone yeast glucose broth supplemented with p-hydroxyphenylacetic acid. J Clin Microbiol 28, 1851–1853.
    [Google Scholar]
  19. Stabler, R. A., Gerding, D. N., Songer, J. G., Drudy, D., Brazier, J. S., Trinh, H. T., Witney, A. A., Hinds, J. & Wren, B. W. ( 2006; ). Comparative phylogenomics of Clostridium difficile reveals clade specificity and microevolution of hypervirulent strains. J Bacteriol 188, 7297–7305.[CrossRef]
    [Google Scholar]
  20. Toyokawa, M., Ueda, A., Tsukamoto, H., Nishi, I., Horikawa, M., Sunada, A. & Asari, S. ( 2003; ). Pseudomembranous colitis caused by toxin A-negative/toxin B-positive variant strain of Clostridium difficile. J Infect Chemother 9, 351–354.[CrossRef]
    [Google Scholar]
  21. van den Berg, R. J., Claas, E. C. J., Oyib, D. H., Klaassen, C. H. W., Dijkshoorn, L., Brazier, J. S. & Kuijper, E. J. ( 2004; ). Characterization of toxin A-negative, toxin B-positive Clostridium difficile isolates from outbreaks in different countries by amplified fragment length polymorphism and PCR ribotyping. J Clin Microbiol 42, 1035–1041.[CrossRef]
    [Google Scholar]
  22. Warny, M., Pepin, J., Fang, A., Killgore, G., Thompson, A., Brazier, J., Frost, E. & McDonald, L. C. ( 2005; ). Toxin production by an emerging strain of Clostridium difficile associated with outbreaks of severe disease in North America and Europe. Lancet 366, 1079–1084.[CrossRef]
    [Google Scholar]
  23. Wüst, J. & Hardegger, U. ( 1983; ). Transferable resistance to clindamycin, erythromycin, and tetracycline in Clostridium difficile. Antimicrob Agents Chemother 23, 784–786.[CrossRef]
    [Google Scholar]
  24. Yokoyama, M. T. & Carlson, J. R. ( 1981; ). Production of skatole and para-cresol by a rumen Lactobacillus sp. Appl Environ Microbiol 41, 71–76.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.47744-0
Loading
/content/journal/jmm/10.1099/jmm.0.47744-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error