1887

Abstract

This study evaluated the adjuvant activity of two peptides derived from : a fragment of the receptor-binding domain of toxin A (TxA) and a fragment of the 36 kDa surface-layer protein (SLP-36kDa) from strain C253. Their ability to affect the magnitude, distribution and polarization of the immune response against fibronectin-binding protein A (FnbpA), a protective vaccine antigen against , was evaluated using two different routes of immunization: intranasal and subcutaneous. It was shown that (i) the route of immunization affected the magnitude of the immune response; (ii) both peptides enhanced the production of circulating anti-FnbpA IgG and IgA; (iii) following mucosal immunization TxA was more effective than SLP-36kDa at inducing antibody in the gastrointestinal tract; (iv) the adjuvant influenced the Th1/Th2 balance; and (v) TxA was more effective than SLP-36kDa in inducing a cell-mediated response. These studies provide insight into the ability of different -derived peptides to differentially affect and polarize the activity of the immune system and on their potential use as adjuvants in newly developed vaccines.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.47736-0
2008-06-01
2019-10-23
Loading full text...

Full text loading...

/deliver/fulltext/jmm/57/6/725.html?itemId=/content/journal/jmm/10.1099/jmm.0.47736-0&mimeType=html&fmt=ahah

References

  1. Aizpurua, H. J. & Russell-Jones, G. J. ( 1988; ). Identification of classes of proteins that provoke an immune response upon oral feeding. J Exp Med 167, 440–451.[CrossRef]
    [Google Scholar]
  2. Ausiello, C. M., Cerquetti, M., Fedele, G., Spensieri, F., Palazzo, R., Nasso, M., Frezza, S. & Mastrantonio, P. ( 2006; ). Surface layer proteins from Clostridium difficile induce inflammatory and regulatory cytokines in human monocytes and dendritic cells. Microbes Infect 8, 2640–2646.[CrossRef]
    [Google Scholar]
  3. Cario, E. ( 2005; ). Bacterial interactions with cells of the intestinal mucosa: Toll-like receptors and NOD2. Gut 54, 1182–1193.[CrossRef]
    [Google Scholar]
  4. Castagliuolo, I. & LaMont, J. T. ( 1999; ). Pathophysiology, diagnosis and treatment of Clostridium difficile infection. Keio J Med 48, 169–174.[CrossRef]
    [Google Scholar]
  5. Castagliuolo, I., Sardina, M., Brun, P., DeRos, C., Mastrotto, C., Lovato, L. & Palù, G. ( 2004; ). Clostridium difficile toxin A carboxyl-terminus peptide lacking ADP-ribosyltransferase activity acts as a mucosal adjuvant. Infect Immun 72, 2827–2836.[CrossRef]
    [Google Scholar]
  6. Castagliuolo, I., Piccinini, R., Beggiao, E., Palù, G., Mengoli, C., Ditadi, F., Vicenzoni, G. & Zecconi, A. ( 2006; ). Mucosal genetic immunization against four adhesins protects against Staphylococcus aureus-induced mastitis in mice. Vaccine 24, 4393–4402.[CrossRef]
    [Google Scholar]
  7. Cerquetti, M., Molinari, A., Serafino, A., Sebastianelli, A., Diociaiuti, M., Petruzzelli, R., Capo, C. & Mastrantonio, P. ( 2000; ). Characterization of surface layer proteins from different Clostridium difficile clinical isolates. Microb Pathog 28, 363–372.[CrossRef]
    [Google Scholar]
  8. Cerquetti, M., Serafino, A., Sebastianelli, A. & Mastrantonio, P. ( 2002; ). Binding of Clostridium difficile to Caco-2 epithelial cell line and to extracellular matrix proteins. FEMS Immunol Med Microbiol 32, 211–218.[CrossRef]
    [Google Scholar]
  9. De Magistris, M. T. ( 2006; ). Mucosal delivery of vaccine antigens and its advantages in pediatrics. Adv Drug Deliv Rev 58, 52–67.[CrossRef]
    [Google Scholar]
  10. Eveillard, M., Fourel, V., Barc, M. C., Kerneis, S., Coconnier, M. H., Karjalainen, T., Bourlioux, P. & Servin, A. L. ( 1993; ). Identification and characterization of adhesive factors of Clostridium difficile involved in adhesion to human colonic enterocyte-like Caco-2 and mucus-secreting HT-29 cells in culture. Mol Microbiol 7, 371–381.[CrossRef]
    [Google Scholar]
  11. Fallon, P. G. & Alcami, A. ( 2006; ). Pathogen-derived immunomodulatory molecules: future immunotherapeutics? Trends Immunol 27, 470–476.[CrossRef]
    [Google Scholar]
  12. Flegel, W. A., Muller, F., Daubener, W., Fischer, H. G., Hadding, U. & Northoff, H. ( 1991; ). Cytokine response by human monocytes to Clostridium difficile toxin A and toxin B. Infect Immun 59, 3659–3666.
    [Google Scholar]
  13. Heyman, A., Levy, I., Altman, A. & Shoseyov, O. ( 2007; ). SP1 as a novel scaffold building block for self-assembly nanofabrication of submicron enzymatic structures. Nano Lett 7, 1575–1579.[CrossRef]
    [Google Scholar]
  14. Holmgren, J., Czerkinsky, C., Eriksson, K & Mharandi, A. ( 2003; ). Mucosal immunisation and adjuvants: a brief overview of recent advances and challenges. Vaccine 21 (Suppl. 2), S89–S95.[CrossRef]
    [Google Scholar]
  15. Jones, H. P., Hodge, L. M., Fujihashi, K., Kiyono, H., McGhee, J. R. & Simecka, J. W. ( 2001; ). The pulmonary environment promotes Th2 responses after nasal-pulmonary immunization with antigen alone, but Th1 responses are induced during instances of intense immune stimulation. J Immunol 167, 4518–4525.[CrossRef]
    [Google Scholar]
  16. Kyne, L., Warny, M., Qamar, A. & Kelly, C. P. ( 2000; ). Asymptomatic carriage of Clostridium difficile and serum levels of IgG antibody against toxin A. N Engl J Med 342, 390–397.[CrossRef]
    [Google Scholar]
  17. Lammers, A., Nuijten, J. M. & Smith, H. E. ( 1999; ). The fibronectin binding proteins of Staphylococcus aureus are required for adhesion to and invasion of bovine mammary gland cells. FEMS Microbiol Lett 180, 103–109.[CrossRef]
    [Google Scholar]
  18. Mamo, W., Boden, M. & Flock, J. I. ( 1994; ). Vaccination with Staphylococcus aureus fibrinogen-binding proteins (FgBPs) reduces colonisation of Staphylococcus aureus in a mouse mastitis model. FEMS Immunol Med Microbiol 10, 47–53.[CrossRef]
    [Google Scholar]
  19. McKenzie, B. S., Brady, J. L. & Lew, A. M. ( 2004; ). Mucosal immunity: overcoming the barrier for induction of proximal responses. Immunol Res 30, 35–71.[CrossRef]
    [Google Scholar]
  20. Moser, M. ( 2001; ). Regulation of Th1/Th2 development by antigen-presenting cells in vivo. Immunobiology 204, 551–557.[CrossRef]
    [Google Scholar]
  21. Mukherjee, K., Karlsson, S., Burman, L. G. & Akerlund, T. ( 2002; ). Proteins released during high toxin production in Clostridium difficile. Microbiology 148, 2245–2253.
    [Google Scholar]
  22. Nakagawa, I., Takahashi, I., Kiyono, H., McGhee, J. R. & Hamada, S. ( 1996; ). Oral immunization with the B subunit of the heat-labile enterotoxin of Escherichia coli induces early Th1 and late Th2 cytokine expression in Peyer's patches. J Infect Dis 173, 1428–1436.[CrossRef]
    [Google Scholar]
  23. Nestle, F. O., Alijagic, S., Gilliet, M., Sun, Y., Grabbe, S., Dummer, R., Burg, G. & Schadendorf, D. ( 1998; ). Vaccination of melanoma patients with peptide- or tumor lysate-pulsed dendritic cells. Nat Med 4, 328 [CrossRef]
    [Google Scholar]
  24. Pizza, M. G., Giuliani, M. M., Fontana, M. R., Monaci, E., Douce, G., Dougan, G., Mills, K. H., Rappuoli, R. & Del Giudice, G. ( 2001; ). Mucosal vaccines: nontoxic derivatives of LT and CT as mucosal adjuvants. Vaccine 19, 2534–2541.[CrossRef]
    [Google Scholar]
  25. Rappuoli, R. & Pizza, M. G. ( 2000; ). Bacterial toxins. In Cellular Microbiology, pp. 193–220. Edited by P. Cossart, P. Boquet, S. Normark & R. Rappuoli. Washington, DC: American Society for Microbiology.
  26. Svensson, M. & Kaye, P. M. ( 2006; ). Stromal-cell regulation of dendritic-cell differentiation and function. Trends Immunol 27, 580–587.[CrossRef]
    [Google Scholar]
  27. Svensson, M., Maroof, A., Ato, M. & Kaye, P. M. ( 2004; ). Stromal cells direct local differentiation of regulatory dendritic cells. Immunity 21, 805–816.[CrossRef]
    [Google Scholar]
  28. Uddowla, S., Freytag, L. C. & Clements, J. D. ( 2007; ). Effect of adjuvants and route of immunizations on the immune response to recombinant plague antigens. Vaccine 25, 7984–7993.[CrossRef]
    [Google Scholar]
  29. Warny, M. & Kelly, C. P. ( 1999; ). Monocyte cell necrosis is mediated by potassium depletion and caspase-like proteases. Am J Physiol 276, C717–C724.
    [Google Scholar]
  30. Zecconi, A., Binda, E., Borromeo, V. & Piccinini, R. ( 2005; ). Relationship between some Staphylococcus aureus pathogenic factors and growth rates or somatic cell counts. J Dairy Res 72, 203–208.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.47736-0
Loading
/content/journal/jmm/10.1099/jmm.0.47736-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error