1887

Abstract

is the most common candidal pathogen, causing serious systemic disease in immunocompromised patients. Azoles are widely applied and largely effective; however, they are generally fungistatic and clinically resistant isolates are emerging increasingly. The present study provided evidence using a chequerboard technique that amiodarone is strongly synergistic with azoles against resistant , with mean fractional inhibitory concentration indices of 0.01 and high-percentage synergistic interactions of 1250 %. A time–kill study performed by both colony counting and a colorimetric reduction assay confirmed the synergistic interaction, with a ≥2 log decrease in c.f.u. ml compared with the corresponding azoles alone. These results suggest the possibility of supplementing azoles with amiodarone to treat resistant infections.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.47651-0
2008-04-01
2021-10-17
Loading full text...

Full text loading...

/deliver/fulltext/jmm/57/4/457.html?itemId=/content/journal/jmm/10.1099/jmm.0.47651-0&mimeType=html&fmt=ahah

References

  1. Afeltra J., Vitale R. G., Mouton J. W., Verweij P. E. 2004; Potent synergistic in vitro interaction between nonantimicrobial membrane-active compounds and itraconazole against clinical isolates of Aspergillus fumigatus resistant to itraconazole. Antimicrob Agents Chemother 48:1335–1343 [CrossRef]
    [Google Scholar]
  2. Andes D., Forrest A., Lepak A., Nett J., Marchillo K., Lincoln L. 2006; Impact of antimicrobial dosing regimen on evolution of drug resistance in vivo: fluconazole and Candida albicans . Antimicrob Agents Chemother 50:2374–2383 [CrossRef]
    [Google Scholar]
  3. Barchiesi F., Di Francesco L. F., Compagnucci P., Arzeni D., Giacometti A., Scalise G. 1998; In-vitro interaction of terbinafine with amphotericin B, fluconazole and itraconazole against clinical isolates of Candida albicans . J Antimicrob Chemother 41:59–65
    [Google Scholar]
  4. Baumgartner C., Freydiere A. M., Gille Y. 1996; Direct identification and recognition of yeast species from clinical material by using albicans ID and CHROMagar Candida plates. J Clin Microbiol 34:454–456
    [Google Scholar]
  5. CLSI 2002 Reference Method for Broth Dilution Antifungal Susceptibility Testing of Yeasts . Approved standard M27–A2 Wayne, PA: Clinical Laboratory Standards Institute;
    [Google Scholar]
  6. Courchesne W. E. 2002; Characterization of a novel, broad-based fungicidal activity for the antiarrhythmic drug amiodarone. J Pharmacol Exp Ther 300:195–199 [CrossRef]
    [Google Scholar]
  7. Cruz M. C., Goldstein A. L., Blankenship J. R., Del Poeta M., Davis D., Cardenas M. E., Perfect J. R., McCusker J. H., Heitman J. 2002; Calcineurin is essential for survival during membrane stress in Candida albicans . EMBO J 21:546–559 [CrossRef]
    [Google Scholar]
  8. Espinel-Ingroff A., Barchiesi F., Cuenca-Estrella M., Pfaller M. A., Rinaldi M., Rodriguez-Tudela J. L., Verweij P. E. 2005a; International and multicenter comparison of EUCAST and CLSI M27-A2 broth microdilution methods for testing susceptibilities of Candida spp. to fluconazole, itraconazole, posaconazole, and voriconazole. J Clin Microbiol 43:3884–3889 [CrossRef]
    [Google Scholar]
  9. Espinel-Ingroff A., Barchiesi F., Cuenca-Estrella M., Fothergill A., Pfaller M. A., Rinaldi M., Rodriguez-Tudela J. L., Verweij P. E. 2005b; Comparison of visual 24-hour and spectrophotometric 48-hour MICs to CLSI reference microdilution MICs of fluconazole, itraconazole, posaconazole, and voriconazole for Candida spp.: a collaborative study. J Clin Microbiol 43:4535–4540 [CrossRef]
    [Google Scholar]
  10. Filler S. G., Sheppard D. C. 2006; Fungal invasion of normally non-phagocytic host cells. PLoS Pathog 2:e129 [CrossRef]
    [Google Scholar]
  11. Fricker-Hidalgo H., Vandapel O., Duchesne M. A., Mazoyer M. A., Monget D., Lardy B., Lebeau B., Freney J., Ambroise-Thomas P., Grillot R. 1996; Comparison of the new API Candida system to the ID 32C system for identification of clinically important yeast species. J Clin Microbiol 34:1846–1848
    [Google Scholar]
  12. Ghannoum M. A., Fu Y., Ibrahim A. S., Mortara L. A., Shafiq M. C., Edwards J. E. Jr, Criddle R. S. 1995; In vitro determination of optimal antifungal combinations against Cryptococcus neoformans and Candida albicans . Antimicrob Agents Chemother 39:2459–2465 [CrossRef]
    [Google Scholar]
  13. Girmenia C., Venditti M., Martino P. 2003; Fluconazole in combination with flucytosine in the treatment of fluconazole-resistant Candida infections. Diagn Microbiol Infect Dis 46:227–231 [CrossRef]
    [Google Scholar]
  14. Gupta S. S., Ton V. K., Beaudry V., Rulli S., Cunningham K., Rao R. 2003; Antifungal activity of amiodarone is mediated by disruption of calcium homeostasis. J Biol Chem 278:28831–28839 [CrossRef]
    [Google Scholar]
  15. Klepser M. E., Ernst E. J., Lewis R. E., Ernst M. E., Pfaller M. A. 1998; Influence of test conditions on antifungal time–kill curve results: proposal for standardized methods. Antimicrob Agents Chemother 42:1207–1212
    [Google Scholar]
  16. Kuhn D. M., Chandra J., Mukherjee P. K., Ghannoum M. A. 2002; Comparison of biofilms formed by Candida albicans and Candida parapsilosis on bioprosthetic surfaces. Infect Immun 70:878–888 [CrossRef]
    [Google Scholar]
  17. Kuhn D. M., Balkis M., Chandra J., Mukherjee P. K., Ghannoum M. A. 2003; Uses and limitations of the XTT assay in studies of Candida growth and metabolism. J Clin Microbiol 41:506–508 [CrossRef]
    [Google Scholar]
  18. Lewis R. E., Kontoyiannis D. P. 2005; Micafungin in combination with voriconazole in Aspergillus species: a pharmacodynamic approach for detection of combined antifungal activity in vitro. J Antimicrob Chemother 56:887–892 [CrossRef]
    [Google Scholar]
  19. Meletiadis J., Mouton J. W., Meis J. F., Verweij P. E. 2003; In vitro drug interaction modeling of combinations of azoles with terbinafine against clinical Scedosporium prolificans isolates. Antimicrob Agents Chemother 47:106–117 [CrossRef]
    [Google Scholar]
  20. Morschhäuser J. 2002; The genetic basis of fluconazole resistance development in Candida albicans . Biochim Biophys Acta 1587:240–248 [CrossRef]
    [Google Scholar]
  21. Mukherjee P. K., Sheehan D. J., Hitchcock C. A., Ghannoum M. A. 2005; Combination treatment of invasive fungal infections. Clin Microbiol Rev 18:163–194 [CrossRef]
    [Google Scholar]
  22. Nicolay J. P., Bentzen P. J., Ghashghaeinia M., Wieder T., Lang F. 2007; Stimulation of erythrocyte cell membrane scrambling by amiodarone. Cell Physiol Biochem 20:1043–1050 [CrossRef]
    [Google Scholar]
  23. Odds F. C. 2003; Synergy, antagonism, and what the chequerboard puts between them. J Antimicrob Chemother 52:1 [CrossRef]
    [Google Scholar]
  24. Pfaller M. A., Houston A., Coffmann S. 1996; Application of CHROMagar Candida for rapid screening of clinical specimens for Candida albicans , Candida tropicalis , Candida krusei and Candida ( Torulopsis ) glabrata . J Clin Microbiol 34:58–61
    [Google Scholar]
  25. Pfaller M. A., Boyken L., Hollis R. J., Messer S. A., Tendolkar S., Diekema D. J. 2005; In vitro susceptibilities of clinical isolates of Candida species, Cryptococcus neoformans , and Aspergillus species to itraconazole: global survey of 9,359 isolates tested by Clinical and Laboratory Standards Institute broth microdilution methods. J Clin Microbiol 43:3807–3810 [CrossRef]
    [Google Scholar]
  26. Quan H., Cao Y. Y., Xu Z., Zhao J. X., Gao P. H., Qin X. F., Jiang Y. Y. 2006; Potent in vitro synergism of fluconazole and berberine chloride against clinical isolates of Candida albicans resistant to fluconazole. Antimicrob Agents Chemother 50:1096–1099 [CrossRef]
    [Google Scholar]
  27. Ramage G., Vande Walle K., Wickes B. L., López-Ribot J. L. 2001; Standardized method for in vitro antifungal susceptibility testing of Candida albicans biofilms. Antimicrob Agents Chemother 45:2475–2479 [CrossRef]
    [Google Scholar]
  28. Ribeiro M. A., Paula C. R. 2007; Up-regulation of ERG11 gene among fluconazole-resistant Candida albicans generated in vitro: is there any clinical implication?. Diagn Microbiol Infect Dis 57:71–75 [CrossRef]
    [Google Scholar]
  29. Tam V. H., Schilling A. N., Lewis R. E., Melnick D. A., Boucher A. N. 2004; Novel approach to characterization of combined pharmacodynamic effects of antimicrobial agents. Antimicrob Agents Chemother 48:4315–4321 [CrossRef]
    [Google Scholar]
  30. Te Dorsthorst D. T., Verweij P. E., Meis J. F., Punt N. C., Mouton J. W. 2002; Comparison of fractional inhibitory concentration index with response surface modeling for characterization of in vitro interaction of antifungals against itraconazole-susceptible and -resistant Aspergillus fumigatus isolates. Antimicrob Agents Chemother 46:702–707 [CrossRef]
    [Google Scholar]
  31. Te Dorsthorst D. T., Verweij P. E., Meis J. F., Punt N. C., Mouton J. W. 2004; In vitro interactions between amphotericin B, itraconazole, and flucytosine against 21 clinical Aspergillus isolates determined by two drug interaction models. Antimicrob Agents Chemother 48:2007–2013 [CrossRef]
    [Google Scholar]
  32. Vassallo P., Trohman R. G. 2007; Prescribing amiodarone: an evidence-based review of clinical indications. JAMA 298:1312–1322 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.47651-0
Loading
/content/journal/jmm/10.1099/jmm.0.47651-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error