1887

Abstract

In order to assess the lethality of -associated disease (CDAD) and the PCR ribotypes prevalent in Austria, the Austrian Agency for Health and Food Safety requested isolates of from patients in a structured but arbitrary sampling scheme. In the allocated period from February 2006 to January 2007, local hospital laboratories within each of the nine provinces were asked to submit isolates from at least ten cases of CDAD. Confirmation of species identification, toxin detection, susceptibility testing against four antimicrobial agents and typing using a PCR ribotyping method were performed at the reference laboratory. In total, 149 isolates of putative were submitted, from which 142 were included for study. Antimicrobial susceptibility patterns revealed resistance to clindamycin in 57 % and high-level resistance to moxifloxacin in 38 % of isolates tested. CDAD manifested as diarrhoea (including eight cases of bloody diarrhoea) in 126 cases (88.7 %), as pseudomembranous colitis in 15 cases (10.6 %) and as toxic megacolon in one case. Twelve of the 142 patients died within 30 days of specimen collection (8.45 % lethality). A lethal outcome occurred in 2/15 cases (13.3 %) when pseudomembranous colitis was present and in 10/126 cases (7.9 %) in the absence of pseudomembranous colitis or toxic megacolon. Among the 142 isolates from 25 health-care facilities, 41 PCR ribotype patterns were found. The most frequent ribotypes were AI-5 (including six lethal cases out of 26 patients), 014 (two out of 24) and 053 (one out of 24). The typing patterns demonstrated the occurrence of clusters in hospitals.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.47476-0
2008-06-01
2019-10-15
Loading full text...

Full text loading...

/deliver/fulltext/jmm/57/6/702.html?itemId=/content/journal/jmm/10.1099/jmm.0.47476-0&mimeType=html&fmt=ahah

References

  1. Arroyo, L. G., Kruth, S. A., Willey, B. M., Staempfli, H. R., Low, D. E. & Weese, J. S. ( 2005; ). PCR ribotyping of Clostridium difficile isolates originating from human and animal sources. J Med Microbiol 54, 163–166.[CrossRef]
    [Google Scholar]
  2. Aslam, S., Hamill, R. J. & Musher, D. M. ( 2005; ). Treatment of Clostridium difficile-associated disease: old therapies and new strategies. Lancet Infect Dis 5, 549–557.[CrossRef]
    [Google Scholar]
  3. Bartlett, J. G. ( 2002; ). Antibiotic-associated diarrhea. N Engl J Med 346, 334–339.[CrossRef]
    [Google Scholar]
  4. Bartlett, J. G. & Gorbach, S. L. ( 1977; ). Pseudomembranous enterocolitis (antibiotic-related colitis). Adv Intern Med 22, 455–476.
    [Google Scholar]
  5. Baverud, V. ( 2002; ). Clostridium difficile infections in animals with special reference to the horse. A review. Vet Q 24, 203–219.[CrossRef]
    [Google Scholar]
  6. Bidet, P., Lalande, V., Salauze, B., Burghoffer, B., Avesani, V., Delmee, M., Rossier, A., Barbut, F. & Petit, J. C. ( 2000; ). Comparison of PCR-ribotyping, arbitrarily primed PCR, and pulsed-field gel electrophoresis for typing Clostridium difficile. J Clin Microbiol 38, 2484–2487.
    [Google Scholar]
  7. Brazier, J., Patel, B. & Pearson, A. ( 2007; ). Distribution of Clostridium difficile PCR ribotype 027 in British hospitals. Euro Surveill 12, E070426.2
    [Google Scholar]
  8. CDC ( 2005; ). Severe Clostridium difficile-associated disease in populations previously at low risk – four states, 2005. MMWR Morb Mortal Wkly Rep 54, 1201–1205.
    [Google Scholar]
  9. CLSI ( 2007; ). Methods for Antimicrobial Susceptibility Testing of Anaerobic Bacteria. Approved standard M11-A7, 7th edn. Wayne, PA: Clinical and Laboratory Standards Institute.
  10. Delaney, J. A. C. ( 2007; ). Antimicrobial drugs and community acquired Clostridium difficile-associated disease, UK. Emerg Infect Dis 13, 761–763.[CrossRef]
    [Google Scholar]
  11. Indra, A., Huhulescu, S., Hasenberger, P., Schmid, D., Alfery, C., Wuerzner, R., Fille, M., Gattringer, K., Kuijper, E. & Allerberger, F. ( 2006; ). First isolation of Clostridium difficile PCR ribotype 027 in Austria. Euro Surveill 11, E060914.3
    [Google Scholar]
  12. Kato, N., Ou, C. Y., Kato, H., Bartley, S. L., Brown, V. K., Dowell, V. R. J. & Ueno, K. ( 1991; ). Identification of toxigenic Clostridium difficile by the polymerase chain reaction. J Clin Microbiol 29, 33–37.
    [Google Scholar]
  13. Kato, H., Kato, N., Katow, S., Maegawa, T., Nakamura, S. & Lyerly, D. M. ( 1999; ). Deletions in the repeating sequences of the toxin A gene of toxin A-negative, toxin B-positive Clostridium difficile strains. FEMS Microbiol Lett 175, 197–203.[CrossRef]
    [Google Scholar]
  14. Kuijper, E. J., Coignard, B. & Tull, P. ( 2006; ). Emergence of Clostridium difficile-associated disease in North America and Europe. Clin Microbiol Infect 12 (Suppl. 6), 2–18.
    [Google Scholar]
  15. Kuijper, E. J., Coignard, B., Brazier, J., Suetens, C., Drudy, D., Wiuff, C., Pituch, H., Reichert, P., Schneider, F. & other authors ( 2007; ). Update of Clostridium difficile-associated disease due to PCR ribotype 027 in Europe. Euro Surveill 12, 163–166.
    [Google Scholar]
  16. Lefebvre, S. L., Arroyo, L. G. & Weese, J. S. ( 2006; ). Epidemic Clostridium difficile strain in hospital visitation dog. Emerg Infect Dis 12, 1036–1037.[CrossRef]
    [Google Scholar]
  17. McDonald, L. C., Owings, M. & Jernigan, D. B. ( 2006; ). Clostridium difficile infection in patients discharged from US short-stay hospitals, 1996–2003. Emerg Infect Dis 12, 409–415.[CrossRef]
    [Google Scholar]
  18. McDonald, L. C., Coignard, B., Dubberke, E., Song, X., Horan, T. & Kutty, P. K. ( 2007; ). Recommendations for surveillance of Clostridium difficile-associated disease. Infect Control Hosp Epidemiol 28, 140–145.[CrossRef]
    [Google Scholar]
  19. Pituch, H., Brazier, J. S., Obuch-Woszczatyński, P., Wultańska, D., Meisel-Mikołajczyk, F. & Łuczak, M. ( 2006; ). Prevalence and association of PCR ribotypes of Clostridium difficile isolated from symptomatic patients from Warsaw with macrolide-lincosamide-streptogramin B (MLSB) type resistance. J Med Microbiol 55, 207–213.[CrossRef]
    [Google Scholar]
  20. Rodriguez-Palacios, A., Stampfli, H. R., Duffield, T., Peregrine, A. S., Trotz-Williams, L. A., Arroyo, L. G., Brazier, J. S. & Weese, J. S. ( 2006; ). Clostridium difficile PCR ribotypes in calves, Canada. Emerg Infect Dis 12, 1730–1736.[CrossRef]
    [Google Scholar]
  21. Rodriguez-Palacios, A., Staempfli, H. R., Duffield, T. & Weese, J. S. ( 2007; ). Clostridium difficile in retail ground meat, Canada. Emerg Infect Dis 13, 485–487.[CrossRef]
    [Google Scholar]
  22. Rupnik, M. ( 2007; ). Is Clostridium difficile-associated infection a potentially zoonotic and foodborne disease? Clin Microbiol Infect 13, 457–459.[CrossRef]
    [Google Scholar]
  23. Rupnik, M., Grabnar, M. & Geric, B. ( 2003; ). Binary toxin producing Clostridium difficile strains. Anaerobe 9, 289–294.[CrossRef]
    [Google Scholar]
  24. Spigaglia, P. & Mastrantonio, P. ( 2002; ). Molecular analysis of the pathogenicity locus and polymorphism in the putative negative regulator of toxin production (TcdC) among Clostridium difficile clinical isolates. J Clin Microbiol 40, 3470–3475.[CrossRef]
    [Google Scholar]
  25. Spigaglia, P. & Mastrantonio, P. ( 2004; ). Comparative analysis of Clostridium difficile clinical isolates belonging to different genetic lineages and time periods. J Med Microbiol 53, 1129–1136.[CrossRef]
    [Google Scholar]
  26. Stubbs, S., Rupnik, M., Gibert, M., Brazier, J., Duerden, B. & Popoff, M. ( 2000; ). Production of actin-specific ADP-ribosyltransferase (binary toxin) by strains of Clostridium difficile. FEMS Microbiol Lett 186, 307–312.[CrossRef]
    [Google Scholar]
  27. Terhes, G., Urban, E., Soki, J., Hamid, K. A. & Nagy, E. ( 2004; ). Community-acquired Clostridium difficile diarrhea caused by binary toxin, toxin A, and toxin B gene-positive isolates in Hungary. J Clin Microbiol 42, 4316–4318.[CrossRef]
    [Google Scholar]
  28. Terhes, G., Brazier, J. S., Urban, E., Soki, J. & Nagy, E. ( 2006; ). Distribution of Clostridium difficile PCR ribotypes in regions of Hungary. J Med Microbiol 55, 279–282.[CrossRef]
    [Google Scholar]
  29. van den Berg, R. J., Claas, E. C. J., Oyib, D. H., Klaassen, C. H. W., Dijkshoorn, L., Brazier, J. S. & Kuijper, E. J. ( 2004; ). Characterization of toxin A-negative, toxin B-positive Clostridium difficile isolates from outbreaks in different countries by amplified fragment length polymorphism and PCR ribotyping. J Clin Microbiol 42, 1035–1041.[CrossRef]
    [Google Scholar]
  30. van den Berg, R. J., Ameen, H. A., Furusawa, T., Claas, E. C., van der Vorm, E. R. & Kuijper, E. J. ( 2005; ). Coexistence of multiple PCR-ribotype strains of Clostridium difficile in faecal samples limits epidemiological studies. J Med Microbiol 54, 173–179.[CrossRef]
    [Google Scholar]
  31. Viscidi, R., Willey, S. & Bartlett, J. G. ( 1981; ). Isolation rates and toxigenic potential of Clostridium difficile isolates from various patient populations. Gastroenterology 81, 5–9.
    [Google Scholar]
  32. Vonberg, R. P., Schwab, F. & Gastmeier, P. ( 2007; ). Clostridium difficile in discharged inpatients, Germany. Emerg Infect Dis 13, 179–180.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.47476-0
Loading
/content/journal/jmm/10.1099/jmm.0.47476-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error