1887

Abstract

Infection by the pandemic clone of is prevalent in southern Thailand. This study actively surveyed the incidence of infection in this area. A total of 865 isolates of was obtained from patients at Hat Yai Hospital, the main public hospital in Songkhla Province, Thailand, from 2000 to 2005. The isolates were examined by group-specific PCR (GS-PCR) specific for the pandemic clone, and for the presence of two major virulence genes, and , and the O : K serotype. Representative isolates were also examined by antibiogram pattern and DNA fingerprinting using an arbitrarily primed PCR method to determine the clonal relationships between isolates. The total number of isolates was less in 2000 and more in 2004 and 2005 than in the years 2001–2003. The increase in the numbers of infections in 2004 and 2005 was not due to the emergence of a particular clone having unique characteristics, but was probably due to climate change. From 2000 to 2003, the percentages of pandemic strains of , defined as GS-PCR-positive , was stable at 64.1, 67.5, 69.7 and 67.7 % of the total isolates each year, respectively. However, in 2004 and 2005, the percentages decreased to 56.1 and 55.5 %, respectively. The O : K serotypes of the pandemic isolates remained unchanged. The proportional decrease in infections caused by the pandemic strains are probably due to the population in this area gradually developing immunity to the pandemic clone whilst continuing to be susceptible to other strains.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.47439-0
2007-12-01
2024-10-05
Loading full text...

Full text loading...

/deliver/fulltext/jmm/56/12/1630.html?itemId=/content/journal/jmm/10.1099/jmm.0.47439-0&mimeType=html&fmt=ahah

References

  1. Bhoopong P., Palittapongarnpim P., Pomwised P., Kiatkittipong A., Kamruzzaman M., Nakaguchi Y., Nishibuchi M., Ishibashi M., Vuddhakul V. 2007; Variability in properties of Vibrio parahaemolyticus strains isolated from single patients. J Clin Microbiol 45:1544–1550 [CrossRef]
    [Google Scholar]
  2. Bhuiyan N. A., Ansaruzzaman M., Kamruzzaman M., Alam K., Chowdhury N. R., Nishibuchi M., Shah M. F., David A. S., Takeda Y., Nair G. B. 2002; Prevalence of the pandemic genotype of Vibrio parahaemolyticus in Dhaka, Bangladesh, and significance of its distribution across different serotypes. J Clin Microbiol 40:284–286 [CrossRef]
    [Google Scholar]
  3. Chowdhury N. R., Chakraborty S., Eampokalap B., Chaicumpa W., Chongsa-Nugan M., Moolasart P., Mitra R., Ramamurthy T., Bhattacharya S. K. other authors 2000; Clonal dissemination of Vibrio parahaemolyticus displaying similar DNA fingerprint but belonging to two different serovars (O3 : K6 and O4 : K68) in Thailand and India. Epidemiol Infect 125:17–25 [CrossRef]
    [Google Scholar]
  4. Chowdhury A., Ishibashi M., Thiem V. D., Tuyet D. T., Tung T. V., Chien B. T., von Seidlein L., Canh D. G., Clemens J. other authors 2004; Emergence of serovar transition of Vibrio parahaemolyticus pandemic strains isolated during a diarrhea outbreak in Vietnam between 1997 and 1999. Microbiol Immunol 48:319–327 [CrossRef]
    [Google Scholar]
  5. Colwell R. R. 1996; Global climate and infectious disease: the cholera paradigm. Science 274:2025–2031 [CrossRef]
    [Google Scholar]
  6. Gangarosa E. J., Sanati A., Saghari H., Feeley T. C. 1967; Multiple serotypes of Vibrio cholerae from a case of cholera. Lancet 1:646–648
    [Google Scholar]
  7. Garg P., Nandy R. K., Chaudhury P., Chowdhury N. R., De K., Ramamurthy T., Yamasaki S., Bhattacharya S. K., Takeda Y., Nair G. B. 2000; Emergence of Vibrio cholerae O1 biotype El Tor serotype Inaba from the prevailing O1 Ogawa serotype strains in India. J Clin Microbiol 38:4249–4253
    [Google Scholar]
  8. Hurley C. C., Quirke A. M., Reen F. J., Boyd E. F. 2006; Four genomic islands that mark post-1995 pandemic Vibrio parahaemolyticus isolates. BMC Genomics 7104:
    [Google Scholar]
  9. Kim Y. B., Okuda J., Matsumoto C., Takahashi N., Hashimoto S., Nishibuchi M. 1999; Identification of Vibrio parahaemolyticus strains at the species level by PCR targeted to the toxR gene. J Clin Microbiol 37:1173–1177
    [Google Scholar]
  10. Kishishita M., Matsuoka N., Kumagai K., Yamasaki S., Takeda Y., Nishibushi M. 1992; Sequence variation in the thermostable direct hemolysin-related hemolysin ( trh ) gene of Vibrio parahaemolyticus . Appl Environ Microbiol 58:2449–2457
    [Google Scholar]
  11. Laohaprertthisan V., Chowdhury A., Kongmuang U., Kalnauwakul S., Ishibashi M., Matsumoto C., Nishibuchi M. 2003; Prevalence and serodiversity of the pandemic clone among the clinical strains of Vibrio parahaemolyticus isolated in southern Thailand. Epidemiol Infect 130:395–406
    [Google Scholar]
  12. Matsumoto C., Okuda J., Ishibashi M., Iwanaga M., Garg P., Ramamurthy T., Wong H., Depaola A., Kim Y. B. other authors 2000; Pandemic spread of an O3 : K6 clone of Vibrio parahaemolyticus and emergence of related strains evidenced by arbitrarily primed and toxRS sequence analyses. J Clin Microbiol 38:578–585
    [Google Scholar]
  13. NCCLS 2000 Performance Standards for Antimicrobial Disk Susceptibility Tests , approved standard M2–A7 Villanova, PA: National Committee for Clinical Laboratory Standards;
    [Google Scholar]
  14. Nishibuchi M., Kaper J. B. 1995; Thermostable direct hemolysin gene of Vibrio parahaemolyticus : a virulence gene acquired by a marine bacterium. Infect Immun 63:2093–2099
    [Google Scholar]
  15. Okitsu T., Osawa R., Pornruangwong S., Yamai S. 1997; Urea hydrolysis and suppressed production of thermostable direct hemolysin (TDH) by Vibrio parahaemolyticus associated with presence of TDH-related genes. Curr Microbiol 34:314–317 [CrossRef]
    [Google Scholar]
  16. Okuda J., Ishibashi M., Abbott S. L., Janda J. M., Nishibuchi M. 1997a; Analysis of the thermostable direct hemolysin ( tdh ) gene and the tdh -related hemolysin ( trh ) genes in urease-positive strains of Vibrio parahaemolyticus isolated on the West Coast of the United States. J Clin Microbiol 35:1965–1971
    [Google Scholar]
  17. Okuda J., Ishibashi M., Hayakawa E., Nishino T., Takeda Y., Mukhopadhyay A., Garg S., Bhattacharya S. K., Nair G. B., Nishibuchi M. 1997b; Emergence of a unique O3 : K6 clone of Vibrio parahaemolyticus in Calcutta, India, and isolation of strains from the same clonal group from Southeast Asian travelers arriving in Japan. J Clin Microbiol 35:3150–3155
    [Google Scholar]
  18. Okura M., Osawa R., Arakawa E., Terajima J., Watanabe H. 2005; Identification of Vibrio parahaemolyticus pandemic group-specific DNA sequence by genomic subtraction. J Clin Microbiol 43:3533–3536 [CrossRef]
    [Google Scholar]
  19. Pascual M., Bouma M. J., Dobson A. P. 2002; Cholera and climate: revisiting the quantitative evidence. Microbes Infect 4:237–245 [CrossRef]
    [Google Scholar]
  20. Qadri F., Alam M. S., Nishibuchi M., Rahman T., Alam N. H., Chisti J., Kondo S., Sugiyama J., Bhuiyan N. A. other authors 2003; Adaptive and inflammatory immune responses in patients infected with strains of Vibrio parahaemolyticus . J Infect Dis 187:1085–1096 [CrossRef]
    [Google Scholar]
  21. Sack R. B., Miller L. E. 1969; Progressive changes of Vibrio serotypes in germ-free mice infected with Vibrio cholerae O1. J Bacteriol 99:688–695
    [Google Scholar]
  22. Sambrook J., Fritsch E. F., Maniatis T. 2001 Molecular Cloning: a Laboratory Manual , 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  23. Serichantalergs O., Bhuiyan N. A., Nair G. B., Chivaratanond O., Srijan A., Bodhidatta L., Anuras S., Mason C. J. 2007; The dominance of pandemic serovars of Vibrio parahaemolyticus in expatriates and sporadic cases of diarrhoea in Thailand, and a new emergent serovar (O3 : K46) with pandemic traits. J Med Microbiol 56:608–613 [CrossRef]
    [Google Scholar]
  24. Sheehy T. W., Sprintz H., Augerson W. S., Formal S. B. 1966; Laboratory Vibrio cholerae infection in the United States. JAMA 197:321–325 [CrossRef]
    [Google Scholar]
  25. Shirai H., Ito H., Hirayama T., Nakabayashi Y., Kumagai K., Takeda Y., Nishibuchi M. 1990; Molecular epidemiologic evidence for association of thermostable direct hemolysin (TDH) and TDH-related hemolysin of Vibrio parahaemolyticus with gastroenteritis. Infect Immun 58:3568–3573
    [Google Scholar]
  26. Supawat K., Huttayananont S. 1997; Serotype conversion of Vibrio cholerae isolates during 1980–1996. Bull Dept Med Sci 39:271–277 (in Thai
    [Google Scholar]
  27. Tada J., Ohashi T., Nishimura N., Shirasaki Y., Ozaki H., Fugushima S., Takano J., Nihsibuchi M., Takeda F. 1992; Detection of the thermostable direct hemolysin gene ( tdh ) and the thermostable direct hemolysin-related hemolysin gene ( trh ) of Vibrio parahaemolyticus by polymerase chain reaction. Mol Cell Probes 6:477–487 [CrossRef]
    [Google Scholar]
  28. Vuddhakul V., Chowdhury A., Loahaprertthisan V., Pungrasamee P., Patararungrong N., Thianmontri P., Ishibashi M., Matsumoto C., Nishibuchi M. 2000; Isolation of a pandemic O3 : K6 clone of a Vibrio parahaemolyticus strain from environmental and clinical sources in Thailand. Appl Environ Microbiol 66:2685–2689 [CrossRef]
    [Google Scholar]
  29. Wang H. Z., Wong M. M. L., O'Toole D., Mak M. M. H., Wu R. S. S., Kong R. Y. C. 2006; Identification of a DNA methyltransferase gene carried on a pathogenicity island-like element (VPAI) in Vibrio parahaemolyticus and its prevalence among clinical and environmental isolates. Appl Environ Microbiol 72:4455–4460 [CrossRef]
    [Google Scholar]
  30. Williams T. L., Musser S. M., Nordstrom J. L., DePaola A., Monday S. R. 2004; Identification of a protein biomarker unique to the pandemic O3 : K6 clone of Vibrio parahaemolyticus . J Clin Microbiol 42:1657–1665 [CrossRef]
    [Google Scholar]
  31. Wong H. C., Liu S. H., Wang T. K., Lee C. L., Chiou C. H., Liu D. P., Nishibuchi M., Lee B. K. 2000; Characteristics of Vibrio parahaemolyticus O3 : K6 from Asia. Appl Environ Microbiol 66:3981–3986 [CrossRef]
    [Google Scholar]
  32. Yeung P. S., Boor K. J. 2004; Epidemiology, pathogenesis and prevention of foodborne Vibrio parahaemolyticus infections. Foodborne Pathog Dis 1:74–88 [CrossRef]
    [Google Scholar]
/content/journal/jmm/10.1099/jmm.0.47439-0
Loading
/content/journal/jmm/10.1099/jmm.0.47439-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error