1887

Abstract

The chemical structure and immunobiological activities of lipid A, an active centre of LPS, were investigated. LPS preparations of were extracted using a hot phenol/water method, after which purified lipid A specimens were prepared by weak acid hydrolysis, followed by normal phase and gel filtration chromatographic separation. The lipid A structure was determined by MS to be a diglucosamine backbone with diphosphates and five C normal chain acyl groups, including two acyloxyacyl groups at the 2 and 3 positions of the non-reducing side. lipid A and -type synthetic lipid A (compound 506) exhibited definite reactivity in amoebocyte lysate assays. The lethal toxicity of lipid A was nearly comparable to that of compound 506, and both induced nuclear factor-B activation in murine cells via Toll-like receptor (TLR)4/MD-2 but not TLR2, as well as various inflammatory cytokines in peritoneal macrophages of C3H/HeN mice but not C3H/HeJ mice. Furthermore, lipid A induced nearly the same amounts of tumour necrosis factor alpha, interleukin-6, and nitric oxide production by the murine alveolar macrophage cell line MH-S as compared with compound 506. These results indicate that possesses a penta-acylated lipid A, which is nearly identical to lipid A in regard to biological activities, while it also may be a crucial virulence factor of the bacterium.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.47327-0
2007-11-01
2019-10-24
Loading full text...

Full text loading...

/deliver/fulltext/jmm/56/11/1440.html?itemId=/content/journal/jmm/10.1099/jmm.0.47327-0&mimeType=html&fmt=ahah

References

  1. Adams, G. A. & Singh, P. P. ( 1970; ). The chemical constitution of lipid A from Serratia marcescens. Can J Biochem 48, 55–62.
    [Google Scholar]
  2. Alexander, C. & Zähringer, U. ( 2002; ). Chemical structure of lipid A – the primary immunomodulatory center of bacterial lipopolysaccharides. Trends Glycosci Glycotechnol 14, 69–86.[CrossRef]
    [Google Scholar]
  3. Carbonell, G. V., Della Colleta, H. H., Yano, T., Darini, A. L., Levy, C. E. & Fonseca, B. A. ( 2000; ). Clinical relevance and virulence factors of pigmented Serratia marcescens. FEMS Immunol Med Microbiol 28, 143–149.[CrossRef]
    [Google Scholar]
  4. Carlon, G. C., Dickinson, P. C., Goldiner, P. L., Turnbull, A. D. & Howland, W. S. ( 1977; ). Serratia marcescens pneumonia. Arch Surg 112, 1220–1224.[CrossRef]
    [Google Scholar]
  5. Coria-Jimenez, R., Romero-Olvera, J. & Celis-Cruz, C. ( 1998; ). Superficial hydrophobicity in Serratia marcescens strains of clinical origin. Res Microbiol 149, 27–29.[CrossRef]
    [Google Scholar]
  6. Ernst, R. K., Yi, E. C., Guo, L., Lim, K. B., Burns, J. L., Hackett, M. & Miller, S. I. ( 1999; ). Specific lipopolysaccharide found in cystic fibrosis airway Pseudomonas aeruginosa. Science 286, 1561–1565.[CrossRef]
    [Google Scholar]
  7. Flad, H. D., Loppnow, H., Rietschel, E. T. & Ulmer, A. J. ( 1993; ). Agonists and antagonists for lipopolysaccharide-induced cytokines. Immunobiology 187, 303–316.[CrossRef]
    [Google Scholar]
  8. Fuchs, R. L., McPherson, S. A. & Drahos, D. J. ( 1986; ). Cloning of a Serratia marcescens gene encoding chitinase. Appl Environ Microbiol 51, 504–509.
    [Google Scholar]
  9. Hejazi, A. & Falkiner, F. R. ( 1997; ). Serratia marcescens. J Med Microbiol 46, 903–912.[CrossRef]
    [Google Scholar]
  10. Hoshino, K., Takeuchi, O., Kawai, T., Sanjo, H., Ogawa, T., Takeda, Y., Takeda, K. & Akira, S. ( 1999; ). Cutting edge: Toll-like receptor 4 (TLR4)-deficient mice are hyporesponsive to lipopolysaccharide: evidence for TLR4 as the Lps gene product. J Immunol 162, 3749–3752.
    [Google Scholar]
  11. Imoto, M., Yoshimura, N., Kusumoto, S. & Shiba, T. ( 1984; ). Total synthesis of lipid A, active principle of bacterial endotoxin. Proc Jpn Acad Ser B 60, 285–288.[CrossRef]
    [Google Scholar]
  12. Kärber, G. ( 1931; ). Beitrag zür kollektiven behandlung pharmakologischer reihenversuche. Naunyn Schmiedebergs Arch Exp Pathol Pharmakol 162, 480–483.[CrossRef]
    [Google Scholar]
  13. Kato, H., Haishima, Y., Iida, T., Tanaka, A. & Tanamoto, K. ( 1998; ). Chemical structure of lipid A isolated from Flavobacterium meningosepticum lipopolysaccharide. J Bacteriol 180, 3891–3899.
    [Google Scholar]
  14. Kotani, S., Takada, H., Tsujimoto, M., Ogawa, T., Takahashi, I., Ikeda, T., Otsuka, K., Shimauchi, H., Kasai, N. & other authors ( 1985; ). Synthetic lipid A with endotoxic and related biological activities comparable to those of a natural lipid A from an Escherichia coli re-mutant. Infect Immun 49, 225–237.
    [Google Scholar]
  15. Kwitko, A. O., Hamra, L. K. & Atkinson, J. M. ( 1977; ). Serratia: opportunistic pathogen of increasing clinical importance. Med J Aust 2, 119–121.
    [Google Scholar]
  16. Luchi, M. & Morrison, D. C. ( 2000; ). Comparable endotoxic properties of lipopolysaccharides are manifest in diverse clinical isolates of gram-negative bacteria. Infect Immun 68, 1899–1904.[CrossRef]
    [Google Scholar]
  17. Makimura, Y., Asai, Y., Taiji, Y., Sugiyama, A., Tamai, R. & Ogawa, T. ( 2006; ). Correlation between chemical structure and biological activities of Porphyromonas gingivalis synthetic lipopeptide derivatives. Clin Exp Immunol 146, 159–168.[CrossRef]
    [Google Scholar]
  18. Maus, U., Rosseau, S., Knies, U., Seeger, W. & Lohmeyer, J. ( 1998; ). Expression of pro-inflammatory cytokines by flow-sorted alveolar macrophages in severe pneumonia. Eur Respir J 11, 534–541.
    [Google Scholar]
  19. Mayeux, P. R. ( 1997; ). Pathobiology of lipopolysaccharide. J Toxicol Environ Health 51, 415–435.[CrossRef]
    [Google Scholar]
  20. Nagai, Y., Akashi, S., Nagafuku, M., Ogata, M., Iwakura, Y., Akira, S., Kitamura, T., Kosugi, A., Kimoto, M. & Miyake, K. ( 2002; ). Essential role of MD-2 in LPS responsiveness and TLR4 distribution. Nat Immunol 3, 667–672.
    [Google Scholar]
  21. Nathan, C. F. ( 1987; ). Secretory products of macrophages. J Clin Invest 79, 319–326.[CrossRef]
    [Google Scholar]
  22. Ogawa, T., Asai, Y., Hashimoto, M., Takeuchi, O., Kurita, T., Yoshikai, Y., Miyake, K. & Akira, S. ( 2002; ). Cell activation by Porphyromonas gingivalis lipid A molecule through Toll-like receptor 4- and myeloid differentiation factor 88-dependent signaling pathway. Int Immunol 14, 1325–1332.[CrossRef]
    [Google Scholar]
  23. Pendino, K. J., Laskin, J. D., Shuler, R. L., Punjabi, C. J. & Laskin, D. L. ( 1993; ). Enhanced production of nitric oxide by rat alveolar macrophages after inhalation of a pulmonary irritant is associated with increased expression of nitric oxide synthase. J Immunol 151, 7196–7205.
    [Google Scholar]
  24. Poltorak, A., He, X., Smirnova, I., Liu, M. Y., Van Huffel, C., Du, X., Birdwell, D., Alejos, E., Silva, M. & other authors ( 1998; ). Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. Science 282, 2085–2088.[CrossRef]
    [Google Scholar]
  25. Raetz, C. R. ( 1990; ). Biochemistry of endotoxins. Annu Rev Biochem 59, 129–170.[CrossRef]
    [Google Scholar]
  26. Reid, G. & Sobel, J. D. ( 1987; ). Bacterial adherence in the pathogenesis of urinary tract infection: a review. Rev Infect Dis 9, 470–487.[CrossRef]
    [Google Scholar]
  27. Sanders, C. V., Jr, Luby, J. P., Johanson, W. G., Jr, Barnett, J. A. & Sanford, J. P. ( 1970; ). Serratia marcescens infections from inhalation therapy medications: nosocomial outbreak. Ann Intern Med 73, 15–21.[CrossRef]
    [Google Scholar]
  28. Takayama, K., Qureshi, N., Mascagni, P., Anderson, L. & Raetz, C. R. ( 1983; ). Glucosamine-derived phospholipids in Escherichia coli. Structure and chemical modification of a triacyl glucosamine 1-phosphate found in a phosphatidylglycerol-deficient mutant. J Biol Chem 258, 14245–14252.
    [Google Scholar]
  29. Tanamoto, K., Kato, H., Haishima, Y. & Azumi, S. ( 2001; ). Biological properties of lipid A isolated from Flavobacterium meningosepticum. Clin Diagn Lab Immunol 8, 522–527.
    [Google Scholar]
  30. Thomson, N. R., Crow, M. A., McGowan, S. J., Cox, A. & Salmond, G. P. ( 2000; ). Biosynthesis of carbapenem antibiotic and prodigiosin pigment in Serratia is under quorum sensing control. Mol Microbiol 36, 539–556.
    [Google Scholar]
  31. Traub, W. H., Spohr, M. & Bauer, D. ( 1987; ). Active immunization of NMRI mice against Serratia marcescens. I. Phenol-water lipopolysaccharide fractions and purified metalloproteases. Zentralbl Bakteriol Mikrobiol Hyg [A] 265, 182–196.
    [Google Scholar]
  32. Weinberg, J. B., Granger, D. L., Pisetsky, D. S., Seldin, M. F., Misukonis, M. A., Mason, S. N., Pippen, A. M., Ruiz, P., Wood, E. R. & Gilkeson, G. S. ( 1994; ). The role of nitric oxide in the pathogenesis of spontaneous murine autoimmune disease: increased nitric oxide production and nitric oxide synthase expression in MRL-lpr/lpr mice, and reduction of spontaneous glomerulonephritis and arthritis by orally administered NG-monomethyl-l-arginine. J Exp Med 179, 651–660.[CrossRef]
    [Google Scholar]
  33. Westphal, O. & Jann, K. ( 1965; ). Bacterial lipopolysaccharides. Extraction with phenol-water and further applications of the procedures. Methods Carbohydr Chem 5, 83–91.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.47327-0
Loading
/content/journal/jmm/10.1099/jmm.0.47327-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error