1887

Abstract

strains develop a high variability of lipooligosaccharide (LOS) structures on the cell surface based on variations in the genetic content of the LOS biosynthesis locus. While the importance of these variations for ganglioside mimicry as a critical factor in the triggering of Guillain–Barré syndrome has already been shown, little work has been done on the investigation of LOS structures and their function in the pathogenesis of gastrointestinal disease. In this study, the presence of several LOS genes in 40 strains with different abilities to colonize the chicken gut and to invade Caco-2 cells was investigated by PCR. Two genes, and , encoding putative -1,3-galactosyltransferases were detected in most strongly invasive strains and rarely in non-invasive strains. A homopolymeric tract within the gene resulted in an intact gene product only in strongly invasive strains. The specific function of these genes during LOS biosynthesis is still unknown. and gene products are suggested to be involved in development of the colonization and invasion ability of . After a classification of the complete LOS loci, an association between a particular LOS class and colonization and invasion ability of the strain could not be detected. Lack of the gene involved in protein glycosylation in one strain could be responsible for the weak colonization and invasion ability of this strain. There is some evidence that different genetic characteristics were responsible for strong or weak colonization and the invasion ability of strains.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.47305-0
2007-12-01
2019-11-12
Loading full text...

Full text loading...

/deliver/fulltext/jmm/56/12/1589.html?itemId=/content/journal/jmm/10.1099/jmm.0.47305-0&mimeType=html&fmt=ahah

References

  1. Blaser, M. J. ( 1997; ). Epidemiologic and clinical features of Campylobacter jejuni infections. J Infect Dis 176 (Suppl. 2), S103–S105.[CrossRef]
    [Google Scholar]
  2. Doig, P., Kinsella, N., Guerry, P. & Trust, T. J. ( 1996; ). Characterization of a post-translational modification of Campylobacter flagellin: identification of a sero-specific glycosyl moiety. Mol Microbiol 19, 379–387.[CrossRef]
    [Google Scholar]
  3. Dorrell, N., Mangan, J. A., Laing, K. G., Hinds, J., Linton, D., Al-Ghusein, H., Barrell, B. G., Parkhill, J., Stoker, N. G. & other authors ( 2001; ). Whole genome comparison of Campylobacter jejuni human isolates using a low-cost microarray reveals extensive genetic diversity. Genome Res 11, 1706–1715.[CrossRef]
    [Google Scholar]
  4. Fouts, D. E., Mongodin, E. F., Mandrell, R. E., Miller, W. G., Rasko, D. A., Ravel, J., Brinkac, L. M., Deboy, R. T., Parker, C. T. & other authors ( 2005; ). Major structural differences and novel potential virulence mechanisms from the genomes of multiple Campylobacter species. PLoS Biol 3, e15 [CrossRef]
    [Google Scholar]
  5. Fry, B. N., Feng, S., Chen, Y. Y., Newell, D. G., Coloe, P. J. & Korolik, V. ( 2000; ). The galE gene of Campylobacter jejuni is involved in lipopolysaccharide synthesis and virulence. Infect Immun 68, 2594–2601.[CrossRef]
    [Google Scholar]
  6. Gilbert, M., Brisson, J. R., Karwaski, M. F., Michniewicz, J., Cunningham, A. M., Wu, Y., Young, N. M. & Wakarchuk, W. W. ( 2000; ). Biosynthesis of ganglioside mimics in Campylobacter jejuni OH4384. Identification of the glycosyltransferase genes, enzymatic synthesis of model compounds, and characterization of nanomole amounts by 600-MHz 1H and 13C NMR analysis. J Biol Chem 275, 3896–3906.[CrossRef]
    [Google Scholar]
  7. Gilbert, M., Karwaski, M. F., Bernatchez, S., Young, N. M., Taboada, E., Michniewicz, J., Cunningham, A. M. & Wakarchuk, W. W. ( 2002; ). The genetic basis for the variation in the lipo-oligosaccharide of the mucosal pathogen, Campylobacter jejuni. Biosynthesis of sialylated ganglioside mimics in the core oligosaccharide. J Biol Chem 277, 327–337.[CrossRef]
    [Google Scholar]
  8. Guerry, P., Szymanski, C. M., Prendergast, M. M., Hickey, T. E., Ewing, C. P., Pattarini, D. L. & Moran, A. P. ( 2002; ). Phase variation of Campylobacter jejuni 81-176 lipooligosaccharide affects ganglioside mimicry and invasiveness in vitro. Infect Immun 70, 787–793.[CrossRef]
    [Google Scholar]
  9. Hänel, I., Müller, J., Müller, W. & Schulze, F. ( 2004; ). Correlation between invasion of Caco-2 eukaryotic cells and colonization ability in the chick gut in Campylobacter jejuni. Vet Microbiol 101, 75–82.[CrossRef]
    [Google Scholar]
  10. Hänel, I., Borrmann, E., Müller, J. & Alter, T. ( 2007; ). Relationships between bacterial genotypes and in vitro virulence properties of Campylobacter jejuni and Campylobacter coli isolated from turkeys. J Appl Microbiol 102, 433–441.
    [Google Scholar]
  11. Ketley, J. M. ( 1997; ). Pathogenesis of enteric infection by Campylobacter. Microbiology 143, 5–21.[CrossRef]
    [Google Scholar]
  12. Larsen, J. C., Szymanski, C. & Guerry, P. ( 2004; ). N-linked protein glycosylation is required for full competence in Campylobacter jejuni 81-176. J Bacteriol 186, 6508–6514.[CrossRef]
    [Google Scholar]
  13. Leonard, E. E., II, Tompkins, L. S., Falkow, S. & Nachamkin, I. ( 2004; ). Comparison of Campylobacter jejuni isolates implicated in Guillain-Barré syndrome and strains that cause enteritis by a DNA microarray. Infect Immun 72, 1199–1203.[CrossRef]
    [Google Scholar]
  14. Linton, D., Gilbert, M., Hitchen, P. G., Dell, A., Morris, H. R., Wakarchuk, W. W., Gregson, N. A. & Wren, B. W. ( 2000; ). Phase variation of a β-1,3 galactosyltransferase involved in generation of the ganglioside GM1-like lipo-oligosaccharide of Campylobacter jejuni. Mol Microbiol 37, 501–514.
    [Google Scholar]
  15. Müller, J., Schulze, F., Müller, W. & Hänel, I. ( 2006; ). PCR detection of virulence-associated genes in Campylobacter jejuni strains with differential ability to invade Caco-2 cells and to colonize the chick gut. Vet Microbiol 113, 123–129.[CrossRef]
    [Google Scholar]
  16. Nachamkin, I., Allos, B. M. & Ho, T. ( 1998; ). Campylobacter species and Guillain-Barré syndrome. Clin Microbiol Rev 11, 555–567.
    [Google Scholar]
  17. Parker, C. T., Horn, S. T., Gilbert, M., Miller, W. G., Woodward, D. L. & Mandrell, R. E. ( 2005; ). Comparison of Campylobacter jejuni lipooligosaccharide biosynthesis loci from a variety of sources. J Clin Microbiol 43, 2771–2781.[CrossRef]
    [Google Scholar]
  18. Parkhill, J., Wren, B. W., Mungall, K., Ketley, J. M., Churcher, C., Basham, D., Chillingworth, T., Davies, R. M., Feltwell, T. & other authors ( 2000; ). The genome sequence of the food-borne pathogen Campylobacter jejuni reveals hypervariable sequences. Nature 403, 665–668.[CrossRef]
    [Google Scholar]
  19. Szymanski, C. M., Yao, R., Ewing, C. P., Trust, T. J. & Guerry, P. ( 1999; ). Evidence for a system of general protein glycosylation in Campylobacter jejuni. Mol Microbiol 32, 1022–1030.[CrossRef]
    [Google Scholar]
  20. Szymanski, C. M., Burr, D. H. & Guerry, P. ( 2002; ). Campylobacter protein glycosylation affects host cell interactions. Infect Immun 70, 2242–2244.[CrossRef]
    [Google Scholar]
  21. Thibault, P., Logan, S. M., Kelly, J. F., Brisson, J. R., Ewing, C. P., Trust, T. J. & Guerry, P. ( 2001; ). Identification of the carbohydrate moieties and glycosylation motifs in Campylobacter jejuni flagellin. J Biol Chem 276, 34862–34870.[CrossRef]
    [Google Scholar]
  22. Wassenaar, T. M., Wagenaar, J. A., Ritger, A., Fearnly, C., Newell, D. G. & Duim, B. ( 2002; ). Homonucleotide stretches in chromosomal DNA of Campylobacter jejuni display high frequency polymorphism as detected by direct PCR analysis. FEMS Microbiol Lett 212, 77–85.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.47305-0
Loading
/content/journal/jmm/10.1099/jmm.0.47305-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error