1887

Abstract

The mammalian cell entry (Mce) operon 3 () is one of four homologous operons of , encoding six (Mce3A–F) invasin-like membrane-associated proteins. Previous studies have shown that recombinant expression of Mce1A encoded by the operon in allows this non-pathogenic bacterium to invade and survive inside macrophages, and latex beads coated with Mce1A are internalized by non-phagocytic HeLa cells. However, the role of other operon proteins (Mce1B–F) and proteins encoded by the operons in facilitating the internalization of in mammalian cells has not been studied. This study was carried out to determine whether Mce proteins encoded by the operon also facilitated the internalization of latex beads by HeLa cells. Recombinant pure Mce3A and lipoprotein LprM (Mce3E) were expressed and purified from cells. Mce1A expressed as a fusion protein with glutathione -transferase (GST–Mce1A) and GST alone, purified similarly from cells, were used as control proteins. Fluorescent latex beads coated with purified proteins were used to study their uptake by HeLa cells using fluorescence microscopy, flow cytometry and electron microscopy. Fluorescence microscopy and flow cytometry showed an association of HeLa cells with beads coated with both Mce3A and LprM, whilst GST–Mce1A and GST yielded the expected results. Transmission electron microscopy confirmed the uptake of beads coated with Mce3A or LprM by HeLa cells. The data showed that Mce3A encoded by the operon facilitated the uptake and internalization of latex beads by HeLa cells. The data also showed, for the first time, the role of another Mce protein (LprM/Mce3E) in facilitating the interaction and internalization of by mammalian cells.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.47095-0
2007-09-01
2019-11-19
Loading full text...

Full text loading...

/deliver/fulltext/jmm/56/9/1145.html?itemId=/content/journal/jmm/10.1099/jmm.0.47095-0&mimeType=html&fmt=ahah

References

  1. Aderem, A. & Underhill, D. M. ( 1999; ). Mechanisms of phagocytosis in macrophages. Annu Rev Immunol 17, 593–623.[CrossRef]
    [Google Scholar]
  2. Ahmad, S., Akbar, P. K., Wiker, H. G., Harboe, M. & Mustafa, A. S. ( 1999; ). Cloning, expression and immunological reactivity of two mammalian cell entry proteins encoded by the mce1 operon of Mycobacterium tuberculosis. Scand J Immunol 50, 510–518.[CrossRef]
    [Google Scholar]
  3. Ahmad, S., Ali, M. M. & Mustafa, A. S. ( 2003; ). Construction of a modified vector for efficient purification of Mycobacterium tuberculosis proteins expressed in Escherichia coli. Protein Expr Purif 29, 167–175.[CrossRef]
    [Google Scholar]
  4. Ahmad, S., El-Shazly, S., Mustafa, A. S. & Al-Attiyah, R. ( 2004; ). Mammalian cell-entry proteins encoded by the mce3 operon of Mycobacterium tuberculosis are expressed during natural infection in humans. Scand J Immunol 60, 382–391.[CrossRef]
    [Google Scholar]
  5. Ahmad, S., El-Shazly, S., Mustafa, A. S. & Al-Attiyah, R. ( 2005; ). The six mammalian cell entry proteins (Mce3A–F) encoded by the mce3 operon are expressed during in vitro growth of Mycobacterium tuberculosis. Scand J Immunol 62, 16–24.[CrossRef]
    [Google Scholar]
  6. Arruda, S., Bomfim, G., Knights, R., Huima-Byron, T. & Riley, L. W. ( 1993; ). Cloning of a Mycobacterium tuberculosis DNA fragment associated with entry and survival inside cells. Science 261, 1454–1457.[CrossRef]
    [Google Scholar]
  7. Behr, M. A., Wilson, M. A., Gill, W. P., Salamon, P., Schoolnik, G. K., Rane, S. & Small, P. M. ( 1999; ). Comparative genomics of BCG vaccines by whole-genome DNA microarray. Science 284, 1520–1523.[CrossRef]
    [Google Scholar]
  8. Bermudez, L. E. & Goodman, J. ( 1996; ). Mycobacterium tuberculosis invades and replicates within type II alveolar cells. Infect Immun 64, 1400–1406.
    [Google Scholar]
  9. Casali, N., Konieczny, M., Schmidt, M. A. & Riley, L. W. ( 2002; ). Invasion activity of a Mycobacterium tuberculosis peptide presented by the Escherichia coli AIDA autotransporter. Infect Immun 70, 6846–6852.[CrossRef]
    [Google Scholar]
  10. Chitale, S., Ehrt, S., Kawamura, I., Fujimura, T., Shimono, N., Anand, N., Lu, S., Cohen-Gould, L. & Riley, L. W. ( 2001; ). Recombinant Mycobacterium tuberculosis protein associated with mammalian cell entry. Cell Microbiol 3, 247–254.[CrossRef]
    [Google Scholar]
  11. Cole, S. T., Brosch, R., Parkhill, J., Garnier, T., Churcher, C., Harris, D., Gordon, S. V., Eiglmeier, K., Gas, S. & other authors ( 1998; ). Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 393, 537–544.[CrossRef]
    [Google Scholar]
  12. Corbett, E. L., Watt, C. J., Walker, N., Mahe, D., Williams, B. G., Raviglione, M. C. & Dye, C. ( 2003; ). The growing burden of tuberculosis: global trends and interactions with the HIV epidemic. Arch Intern Med 163, 1009–1021.[CrossRef]
    [Google Scholar]
  13. Das, A. K., Mitra, D., Harboe, M., Nandi, B., Harkness, R. E., Das, D. & Wiker, H. G. ( 2003; ). Predicted molecular structure of the mammalian cell entry protein Mce1A of Mycobacterium tuberculosis. Biochem Biophys Res Commun 302, 442–447.[CrossRef]
    [Google Scholar]
  14. El-Etr, S. H. & Cirillo, J. D. ( 2001; ). Entry mechanisms of mycobacteria. Front Biosci 6, D737–D747.[CrossRef]
    [Google Scholar]
  15. Frieden, T. R., Sterling, T. R., Munsiff, S. S., Watt, C. J. & Dye, C. ( 2003; ). Tuberculosis. Lancet 362, 887–889.[CrossRef]
    [Google Scholar]
  16. García-Pérez, B. E., Mondragón-Flores, R. & Luna-Herrera, J. ( 2003; ). Internalization of Mycobacterium tuberculosis by macropinocytosis in non-phagocytic cells. Microb Pathog 35, 49–55.[CrossRef]
    [Google Scholar]
  17. Glickman, M. S. & Jacobs, W. R., Jr ( 2001; ). Microbial pathogenesis of Mycobacterium tuberculosis: dawn of a discipline. Cell 104, 477–485.[CrossRef]
    [Google Scholar]
  18. Gordon, S. V., Brosch, R., Billault, A., Garnier, T., Eiglmeier, K. & Cole, S. T. ( 1999; ). Identification of variable regions in the genomes of tubercle bacilli using bacterial artificial chromosome arrays. Mol Microbiol 32, 643–655.[CrossRef]
    [Google Scholar]
  19. Harboe, M., Christensen, A., Haile, Y., Ulvund, G., Ahmad, S., Mustafa, A. S. & Wiker, H. G. ( 1999; ). Demonstration of expression of six proteins of the mammalian cell entry (mce1) operon of Mycobacterium tuberculosis by anti-peptide antibodies, enzyme-linked immunosorbent assay and reverse transcription-polymerase chain reaction. Scand J Immunol 50, 519–527.[CrossRef]
    [Google Scholar]
  20. Hernandez-Pando, R., Jeyanathan, M., Mengistu, G., Aquilar, D., Orozco, H., Harboe, M., Rook, G. A. & Bjune, G. ( 2000; ). Persistence of DNA from Mycobacterium tuberculosis in superficially normal lung tissue during latent infection. Lancet 356, 2133–2138.[CrossRef]
    [Google Scholar]
  21. Hingley-Wilson, S. M., Sambandamurthy, V. K. & Jacobs, W. R., Jr ( 2003; ). Survival perspectives from the world's most successful pathogen, Mycobacterium tuberculosis. Nat Immunol 4, 949–955.[CrossRef]
    [Google Scholar]
  22. Kang, P. B., Azad, A. K., Torrelles, J. B., Kaufman, T. M., Beharka, A., Tibesar, E., DesJardin, L. E. & Schlesinger, L. S. ( 2005; ). The human macrophage mannose receptor directs Mycobacterium tuberculosis lipoarabinomannan-mediated phagosome biogenesis. J Exp Med 202, 987–999.[CrossRef]
    [Google Scholar]
  23. Krajci, D., Mares, V., Lisa, V., Spanova, A. & Vorlicek, J. ( 2000; ). Ultrastructure of nuclei of cisplatin-treated C6 glioma cells undergoing apoptosis. Eur J Cell Biol 79, 365–376.[CrossRef]
    [Google Scholar]
  24. Lu, S., Tager, L. A., Chitale, S. & Riley, L. W. ( 2006; ). A cell-penetrating peptide derived from mammalian cell uptake protein of Mycobacterium tuberculosis. Anal Biochem 353, 7–14.[CrossRef]
    [Google Scholar]
  25. Mehta, P. K., Karls, R. K., White, E. H., Ades, E. W. & Quinn, F. D. ( 2006; ). Entry and intracellular replication of Mycobacterium tuberculosis in cultured human microvascular endothelial cells. Microb Pathog 41, 119–124.[CrossRef]
    [Google Scholar]
  26. Mitra, D., Saha, B., Das, D., Wiker, H. G. & Das, A. K. ( 2005; ). Correlating sequential homology of Mce1A, Mce2A, Mce3A and Mce4A with their possible functions in mammalian cell entry of Mycobacterium tuberculosis performing homology modeling. Tuberculosis (Edinb) 85, 337–345.[CrossRef]
    [Google Scholar]
  27. Nguyen, L. & Pieters, J. ( 2005; ). The Trojan horse: survival tactics of pathogenic mycobacteria in macrophages. Trends Cell Biol 15, 269–276.[CrossRef]
    [Google Scholar]
  28. Reddy, V. M. & Hayworth, D. A. ( 2002; ). Interaction of Mycobacterium tuberculosis with human respiratory epithelial cells (HEp-2). Tuberculosis (Edinb) 82, 31–36.[CrossRef]
    [Google Scholar]
  29. Russell, D. G. ( 2001; ). Mycobacterium tuberculosis: here today, and here tomorrow. Nat Rev Mol Cell Biol 2, 569–577.[CrossRef]
    [Google Scholar]
  30. Schlesinger, L. S. ( 1993; ). Macrophage phagocytosis of virulent but not attenuated strains of Mycobacterium tuberculosis is mediated by mannose receptors in addition to complement receptors. J Immunol 150, 2920–2930.
    [Google Scholar]
  31. Schlesinger, L. S., Hull, S. R. & Kaufmann, T. M. ( 1994; ). Binding of the terminal mannosyl units of lipoarabinomannan from a virulent strain of Mycobacterium tuberculosis to human macrophages. J Immunol 152, 4070–4079.
    [Google Scholar]
  32. Zumarraga, M., Bigi, F., Alito, A., Romano, M. I. & Cataldi, A. A. ( 1999; ). A 12.7 kb fragment of Mycobacterium tuberculosis genome is not present in Mycobacterium bovis. Microbiology 145, 893–897.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.47095-0
Loading
/content/journal/jmm/10.1099/jmm.0.47095-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error