1887

Abstract

The Gram-negative intracellular bacteria and are the aetiological agents of Mediterranean spotted fever and endemic typhus, respectively, in humans. Infection of endothelial cells (ECs) lining vessel walls, and the resultant vascular inflammation and haemostatic alterations are salient pathogenetic features of both of these rickettsial diseases. An important consideration, however, is that dramatic differences in the intracellular motility and accumulation patterns for spotted fever versus typhus group rickettsiae have been documented, suggesting the possibility of unique and potentially different interactions with host cells. This study characterized and compared - and -mediated effects on cultured human ECs. The DNA-binding activity of nuclear transcription factor-B (NF-B) and the phosphorylation status of stress-activated p38 kinase were determined as indicators of NF-B and p38 activation. infection resulted in a biphasic activation of NF-B, with an early increase in DNA-binding activity at 3 h, followed by a later peak at 24 h. The activated NF-B species were composed mainly of RelA p65–p50 heterodimers and p50 homodimers. infection of ECs resulted in only early activation of NF-B at 3 h, composed primarily of p65–p50 heterodimers. Whilst infection induced increased phosphorylation of p38 kinase (threefold mean induction) with the maximal response at 3 h, a considerably less-intense response peaking at about 6 h post-infection was found with . Furthermore, mRNA expression of the chemokines interleukin (IL)-8 and monocyte chemoattractant protein-1 in ECs infected with either species was higher than the corresponding controls, but there were distinct differences in the secretion patterns for IL-8, suggesting the possibility of involvement of post-transcriptional control mechanisms or differences in the release from intracellular storage sites. Thus, the intensity and kinetics of host-cell responses triggered by spotted fever and typhus species exhibit distinct variations that could subsequently lead to differences in the extent of endothelial activation and inflammation and serve as important determinants of pathogenesis.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.47050-0
2007-07-01
2019-10-21
Loading full text...

Full text loading...

/deliver/fulltext/jmm/56/7/896.html?itemId=/content/journal/jmm/10.1099/jmm.0.47050-0&mimeType=html&fmt=ahah

References

  1. Adams, J. S. & Walker, D. H. ( 1981; ). The liver in Rocky Mountain spotted fever. Am J Clin Pathol 75, 156–161.
    [Google Scholar]
  2. Aird, W. C. ( 2006; ). Mechanisms of endothelial cell heterogeneity in health and disease. Circ Res 98, 159–162.[CrossRef]
    [Google Scholar]
  3. Andersson, S. G., Zomorodipour, A., Andersson, J. O., Sicheritz-Ponten, T., Alsmark, U. C., Podowski, R. M., Naslund, A. K., Eriksson, A. S., Winkler, H. H. & Kurland, C. G. ( 1998; ). The genome sequence of Rickettsia prowazekii and the origin of mitochondria. Nature 396, 133–140.[CrossRef]
    [Google Scholar]
  4. Audia, J. P. & Winkler, H. H. ( 2006; ). Study of the five Rickettsia prowazekii proteins annotated as ATP/ADP translocases (Tlc): only Tlc1 transports ATP/ADP, while Tlc4 and Tlc5 transport other ribonucleotides. J Bacteriol 188, 6261–6268.[CrossRef]
    [Google Scholar]
  5. Boyd, A. S. ( 1997; ). Rickettsialpox. Dermatol Clin 15, 313–318.[CrossRef]
    [Google Scholar]
  6. Carlson, J. A. & Chen, K. R. ( 2007; ). Cutaneous vasculitis update: neutrophilic muscular vessel and eosinophilic, granulomatous, and lymphocytic vasculitis syndromes. Am J Dermatopathol 29, 32–43.[CrossRef]
    [Google Scholar]
  7. Clifton, D. R., Rydkina, E., Huyck, H., Pryhuber, G., Freeman, R. S., Silverman, D. J. & Sahni, S. K. ( 2005; ). Expression and secretion of chemotactic cytokines IL-8 and MCP-1 by human endothelial cells after Rickettsia rickettsii infection: regulation by nuclear transcription factor NF-κB. Int J Med Microbiol 295, 267–278.[CrossRef]
    [Google Scholar]
  8. Dignat-George, F., Teysseire, N., Mutin, M., Bardin, N., Lesaule, G., Raoult, D. & Sampol, J. ( 1997; ). Rickettsia conorii infection enhances vascular cell adhesion molecule-1- and intercellular adhesion molecule-1-dependent mononuclear cell adherence to endothelial cells. J Infect Dis 175, 1142–1152.[CrossRef]
    [Google Scholar]
  9. Elghetany, M. T. & Walker, D. H. ( 1999; ). Hemostatic changes in Rocky Mountain spotted fever and Mediterranean spotted fever. Am J Clin Pathol 112, 159–168.
    [Google Scholar]
  10. Eremeeva, M. E., Dasch, G. A. & Silverman, D. J. ( 2000; ). Interaction of rickettsiae with eukaryotic cells. Adhesion, entry, intracellular growth, and host cell responses. Subcell Biochem 33, 479–516.
    [Google Scholar]
  11. Feezor, R. J., Oberholzer, C., Baker, H. V., Novick, D., Rubinstein, M., Moldawer, L. L., Pribble, J., Souza, S., Dinarello, C. A. & other authors ( 2003; ). Molecular characterization of the acute inflammatory response to infections with Gram-negative versus Gram-positive bacteria. Infect Immun 71, 5803–5813.[CrossRef]
    [Google Scholar]
  12. Fournier, P. E., Durand, J. P., Rolain, J. M., Camicas, J. L., Tolou, H. & Raoult, D. ( 2003; ). Detection of Astrakhan fever rickettsia from ticks in Kosovo. Ann N Y Acad Sci 990, 158–161.[CrossRef]
    [Google Scholar]
  13. Gasser, A. M., Birkenheuer, A. J. & Breitschwerdt, E. B. ( 2001; ). Canine Rocky Mountain spotted fever: a retrospective study of 30 cases. J Am Anim Hosp Assoc 37, 41–48.[CrossRef]
    [Google Scholar]
  14. Ghosh, S. ( 1999; ). Regulation of inducible gene expression by the transcription factor NF-κB. Immunol Res 19, 183–189.[CrossRef]
    [Google Scholar]
  15. Gouin, E., Gantelet, H., Egile, C., Lasa, I., Ohayon, H., Villiers, V., Gounon, P., Sansonetti, P. J. & Cossart, P. ( 1999; ). A comparative study of the actin-based motilities of the pathogenic bacteria Listeria monocytogenes, Shigella flexneri, and Rickettsia conorii.. J Cell Sci 112, 1697–1708.
    [Google Scholar]
  16. Gouin, E., Egile, C., Dehoux, P., Villiers, V., Adams, J., Gertler, F., Li, R. & Cossart, P. ( 2004; ). The RickA protein of Rickettsia conorii activates the Arp2/3 complex. Nature 427, 457–461.[CrossRef]
    [Google Scholar]
  17. Hackstadt, T. ( 1996; ). The biology of rickettsiae. Infect Agents Dis 5, 127–143.
    [Google Scholar]
  18. Hackstadt, T. ( 1998; ). The diverse habitats of obligate intracellular parasites. Curr Opin Microbiol 1, 82–87.[CrossRef]
    [Google Scholar]
  19. Heinzen, R. A. ( 2003; ). Rickettsial actin-based motility: behavior and involvement of cytoskeletal regulators. Ann N Y Acad Sci 990, 535–547.[CrossRef]
    [Google Scholar]
  20. Heinzen, R. A., Grieshaber, S. S., Van Kirk, L. S. & Devin, C. J. ( 1999; ). Dynamics of actin-based movement by Rickettsia rickettsii in Vero cells. Infect Immun 67, 4201–4207.
    [Google Scholar]
  21. Jeng, R. L., Goley, E. D., D'Alessio, J. A., Chaga, O. Y., Svitkina, T. M., Borisy, G. G., Heinzen, R. A. & Welch, M. D. ( 2004; ). A Rickettsia WASP-like protein activates the Arp2/3 complex and mediates actin-based motility. Cell Microbiol 6, 761–769.[CrossRef]
    [Google Scholar]
  22. Jensenius, M., Ueland, T., Fournier, P. E., Brosstad, F., Stylianou, E., Vene, S., Myrvang, B., Raoult, D. & Aukrust, P. ( 2003; ). Systemic inflammatory responses in African tick-bite fever. J Infect Dis 187, 1332–1336.[CrossRef]
    [Google Scholar]
  23. Kaplanski, G., Teysseire, N., Farnarier, C., Kaplanski, S., Lissitzky, J. C., Durand, J. M., Soubeyrand, J., Dinarello, C. A. & Bongrand, P. ( 1995; ). IL-6 and IL-8 production from cultured human endothelial cells stimulated by infection with Rickettsia conorii via a cell-associated IL-1α-dependent pathway. J Clin Invest 96, 2839–2844.[CrossRef]
    [Google Scholar]
  24. Kasimova, N. B., Kulikova, I. N., Karpenko, S. F., Burkin, V. S., Altukhov, S. A., Arshba, T. E. & Airapetova, G. S. ( 2002; ). Status of cellular immunity in patients with Astrakhan fever. Ter Arkh 74, 23–26.
    [Google Scholar]
  25. Kofler, S., Nickel, T. & Weis, M. ( 2005; ). Role of cytokines in cardiovascular diseases: a focus on endothelial responses to inflammation. Clin Sci 108, 205–213.[CrossRef]
    [Google Scholar]
  26. Larsen, C. G., Anderson, A. O., Appella, E., Oppenheim, J. J. & Matsushima, K. ( 1989; ). The neutrophil-activating protein (NAP-1) is also chemotactic for T lymphocytes. Science 243, 1464–1466.[CrossRef]
    [Google Scholar]
  27. Lepidi, H., Fournier, P. E. & Raoult, D. ( 2006; ). Histologic features and immunodetection of African tick-bite fever eschar. Emerg Infect Dis 12, 1332–1337.[CrossRef]
    [Google Scholar]
  28. Liu, S. F. & Malik, A. B. ( 2006; ). NF-κB activation as a pathological mechanism of septic shock and inflammation. Am J Physiol Lung Cell Mol Physiol 290, L622–L645.[CrossRef]
    [Google Scholar]
  29. McLeod, M. P., Qin, X., Karpathy, S. E., Gioia, J., Highlander, S. K., Fox, G. E., McNeill, T. Z., Jiang, H., Muzny, D. & other authors ( 2004; ). Complete genome sequence of Rickettsia typhi and comparison with sequences of other rickettsiae. J Bacteriol 186, 5842–5855.[CrossRef]
    [Google Scholar]
  30. Ogata, H., Audic, S., Renesto-Audiffren, P., Fournier, P. E., Barbe, V., Samson, D., Roux, V., Cossart, P., Weissenbach, J. & other authors ( 2001; ). Mechanisms of evolution in Rickettsia conorii and R. prowazekii.. Science 293, 2093–2098.[CrossRef]
    [Google Scholar]
  31. Olano, J. P. ( 2005; ). Rickettsial infections. Ann N Y Acad Sci 1063, 187–196.[CrossRef]
    [Google Scholar]
  32. Policastro, P. F., Peacock, M. G. & Hackstadt, T. ( 1996; ). Improved plaque assays for Rickettsia prowazekii in Vero 76 cells. J Clin Microbiol 34, 1944–1948.
    [Google Scholar]
  33. Radulovic, S., Price, P., Beier, M., Gaywee, J., Macaluso, J. & Azad, A. ( 2002; ). Rickettsia–macrophage interactions: host cell responses to Rickettsia akari and Rickettsia typhi.. Infect Immun 70, 2576–2582.[CrossRef]
    [Google Scholar]
  34. Regnery, R. L., Spruill, C. L. & Plikaytis, B. D. ( 1991; ). Genotypic identification of rickettsiae and estimation of intraspecies sequence divergence for portions of two rickettsial genes. J Bacteriol 173, 1576–1589.
    [Google Scholar]
  35. Rondaij, M. G., Bierings, R., Kragt, A., van Mourik, J. A. & Voorberg, J. ( 2006; ). Dynamics and plasticity of Weibel–Palade bodies in endothelial cells. Arterioscler Thromb Vasc Biol 26, 1002–1007.[CrossRef]
    [Google Scholar]
  36. Rydkina, E., Sahni, S. K., Santucci, L. A., Turpin, L. C., Baggs, R. B. & Silverman, D. J. ( 2004; ). Selective modulation of antioxidant enzyme activities in host tissues during Rickettsia conorii infection. Microb Pathog 36, 293–301.[CrossRef]
    [Google Scholar]
  37. Rydkina, E., Silverman, D. J. & Sahni, S. K. ( 2005; ). Selective activation of p38 stress-activated protein kinase during Rickettsia rickettsii infection of human endothelial cells: role in the induction of chemokine response. Cell Microbiol 7, 1519–1530.[CrossRef]
    [Google Scholar]
  38. Sahni, S. K. ( 2007; ). Endothelial cell infection and hemostasis. Thromb Res 119, 531–549.[CrossRef]
    [Google Scholar]
  39. Sahni, S. K., Van Antwerp, D. J., Eremeeva, M. E., Silverman, D. J., Marder, V. J. & Sporn, L. A. ( 1998; ). Proteasome-independent activation of nuclear factor κB in cytoplasmic extracts from human endothelial cells by Rickettsia rickettsii.. Infect Immun 66, 1827–1833.
    [Google Scholar]
  40. Sahni, S. K., Rydkina, E., Joshi, S. G., Sporn, L. A. & Silverman, D. J. ( 2003; ). Interactions of Rickettsia rickettsii with endothelial nuclear factor-κB in a ‘cell-free’ system. Ann N Y Acad Sci 990, 635–641.[CrossRef]
    [Google Scholar]
  41. Sessler, C. N. & Fowler, A. A., III ( 1996; ). Fulminant Rocky Mountain spotted fever: a hemophagocytic syndrome?. Crit Care Med 24, 365
    [Google Scholar]
  42. Sessler, C. N., Schwartz, M., Windsor, A. C. & Fowler, A. A., III ( 1995; ). Increased serum cytokines and intercellular adhesion molecule-1 in fulminant Rocky Mountain spotted fever. Crit Care Med 23, 973–976.[CrossRef]
    [Google Scholar]
  43. Shi, R. J., Simpson-Haidaris, P. J., Lerner, N. B., Marder, V. J., Silverman, D. J. & Sporn, L. A. ( 1998; ). Transcriptional regulation of endothelial cell tissue factor expression during Rickettsia rickettsii infection: involvement of the transcription factor NF-κB. Infect Immun 66, 1070–1075.
    [Google Scholar]
  44. Sporn, L. A. & Marder, V. J. ( 1996; ). Interleukin-1α production during Rickettsia rickettsii infection of cultured endothelial cells: potential role in autocrine cell stimulation. Infect Immun 64, 1609–1613.
    [Google Scholar]
  45. Sporn, L. A., Shi, R. J., Lawrence, S. O., Silverman, D. J. & Marder, V. J. ( 1991; ). Rickettsia rickettsii infection of cultured endothelial cells induces release of large von Willebrand factor multimers from Weibel–Palade bodies. Blood 78, 2595–2602.
    [Google Scholar]
  46. Sporn, L. A., Lawrence, S. O., Silverman, D. J. & Marder, V. J. ( 1993; ). E-selectin-dependent neutrophil adhesion to Rickettsia rickettsii-infected endothelial cells. Blood 81, 2406–2412.
    [Google Scholar]
  47. Sporn, L. A., Sahni, S. K., Lerner, N. B., Marder, V. J., Silverman, D. J., Turpin, L. C. & Schwab, A. L. ( 1997; ). Rickettsia rickettsii infection of cultured human endothelial cells induces NF-κB activation. Infect Immun 65, 2786–2791.
    [Google Scholar]
  48. Taub, D. D., Anver, M., Oppenheim, J. J., Longo, D. L. & Murphy, W. J. ( 1996; ). T lymphocyte recruitment by interleukin-8 (IL-8). IL-8-induced degranulation of neutrophils releases potent chemoattractants for human T lymphocytes both in vitro and in vivo.. J Clin Invest 97, 1931–1941.[CrossRef]
    [Google Scholar]
  49. Teysseire, N., Arnoux, D., George, F., Sampol, J. & Raoult, D. ( 1992; ). von Willebrand factor release and thrombomodulin and tissue factor expression in Rickettsia conorii-infected endothelial cells. Infect Immun 60, 4388–4393.
    [Google Scholar]
  50. Teysseire, N., Boudier, J. A. & Raoult, D. ( 1995; ). Rickettsia conorii entry into Vero cells. Infect Immun 63, 366–374.
    [Google Scholar]
  51. Valbuena, G. & Walker, D. H. ( 2006; ). The endothelium as a target for infections. Annu Rev Pathol Mech Dis 1, 171–198.[CrossRef]
    [Google Scholar]
  52. Valbuena, G., Bradford, W. & Walker, D. H. ( 2003; ). Expression analysis of the T-cell-targeting chemokines CXCL9 and CXCL10 in mice and humans with endothelial infections caused by rickettsiae of the spotted fever group. Am J Pathol 163, 1357–1369.[CrossRef]
    [Google Scholar]
  53. Valbuena, G., Jordan, J. M. & Walker, D. H. ( 2004; ). T cells mediate cross-protective immunity between spotted fever group rickettsiae and typhus group rickettsiae. J Infect Dis 190, 1221–1227.[CrossRef]
    [Google Scholar]
  54. Viatour, P., Merville, M. P., Bours, V. & Chariot, A. ( 2005; ). Phosphorylation of NF-κB and IκB proteins: implications in cancer and inflammation. Trends Biochem Sci 30, 43–52.[CrossRef]
    [Google Scholar]
  55. Vitale, G., Mansueto, S., Gambino, G., Mocciaro, C., Spinelli, A., Rini, G. B., Affronti, M., Chifari, N., La Russa, C. & other authors ( 2001; ). The acute phase response in Sicilian patients with boutonneuse fever admitted to hospitals in Palermo, 1992–1997. J Infect 42, 33–39.[CrossRef]
    [Google Scholar]
  56. Walker, D. H. & Yu, X. J. ( 2005; ). Progress in rickettsial genome analysis from pioneering of Rickettsia prowazekii to the recent Rickettsia typhi.. Ann N Y Acad Sci 1063, 13–25.[CrossRef]
    [Google Scholar]
  57. Xiao, C. & Ghosh, S. ( 2005; ). NF-κB, an evolutionarily conserved mediator of immune and inflammatory responses. Adv Exp Med Biol 560, 41–45.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.47050-0
Loading
/content/journal/jmm/10.1099/jmm.0.47050-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error