1887

Abstract

The emergence of drug-resistant strains and the widespread occurrence of AIDS demand newer and more efficient control of tuberculosis. The protective efficacy of the current bacille Calmette–Guérin (BCG) vaccine is highly variable. Therefore, development of an effective new vaccine has gained momentum in recent years. Recently, several mutants were tested as potential vaccine candidates in the mouse model of tuberculosis. However, only some of these mutants were able to generate protection equivalent to that of BCG in mice. This study reports the vaccine potential of an attenuated 5′-adenosine phosphosulfate reductase mutant (Δ) of . Immunization of mice with either BCG or Δ followed by infection with the virulent Erdman strain demonstrated that Δ can generate protection equivalent to that of the BCG vaccine.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.46983-0
2007-04-01
2019-10-23
Loading full text...

Full text loading...

/deliver/fulltext/jmm/56/4/454.html?itemId=/content/journal/jmm/10.1099/jmm.0.46983-0&mimeType=html&fmt=ahah

References

  1. Armbruster, C., Junker, W., Vetter, N. & Jaksch, G. ( 1990; ). Disseminated bacille Calmette-Guerin infection in an AIDS patient 30 years after BCG vaccination. J Infect Dis 162, 1216.
    [Google Scholar]
  2. Besnard, M., Sauvion, S., Offredo, C., Gaudelus, J., Gaillard, J. L., Veber, F. & Blanche, S. ( 1993; ). Bacillus Calmette-Guerin infection after vaccination of human immunodeficiency virus-infected children. Pediatr Infect Dis J 12, 993–997.[CrossRef]
    [Google Scholar]
  3. Dye, C., Espinal, M. A., Watt, C. J., Mbiaga, C. & Williams, B. G. ( 2002a; ). Worldwide incidence of multidrug-resistant tuberculosis. J Infect Dis 185, 1197–1202.[CrossRef]
    [Google Scholar]
  4. Dye, C., Williams, B. G., Espinal, M. A. & Raviglione, M. C. ( 2002b; ). Erasing the world's slow stain: strategies to beat multidrug-resistant tuberculosis. Science 295, 2042–2046.[CrossRef]
    [Google Scholar]
  5. Fine, P. E. ( 1995; ). Variation in protection by BCG: implications of and for heterologous immunity. Lancet 346, 1339–1345.[CrossRef]
    [Google Scholar]
  6. Hondalus, M. K., Bardarov, S., Russell, R., Chan, J., Jacobs, W. R., Jr & Bloom, B. R. ( 2000; ). Attenuation of and protection induced by a leucine auxotroph of Mycobacterium tuberculosis. Infect Immun 68, 2888–2898.[CrossRef]
    [Google Scholar]
  7. Jackson, M., Phalen, S. W., Lagranderie, M., Ensergueix, D., Chavarot, P., Marchal, G., McMurray, D. N., Gicquel, B. & Guilhot, C. ( 1999; ). Persistence and protective efficacy of a Mycobacterium tuberculosis auxotroph vaccine. Infect Immun 67, 2867–2873.
    [Google Scholar]
  8. Lugosi, L. ( 1992; ). Relative persistence capacity of BCG substrains in mouse spleen. Computerized statistical analysis. Multiple comparison. Can J Microbiol 38, 165–173.[CrossRef]
    [Google Scholar]
  9. Parrish, N. M., Dick, J. D. & Bishai, W. R. ( 1998; ). Mechanisms of latency in Mycobacterium tuberculosis. Trends Microbiol 6, 107–112.[CrossRef]
    [Google Scholar]
  10. Pavelka, M. S., Jr, Chen, B., Kelley, C. L., Collins, F. M. & Jacobs, W. R., Jr ( 2003; ). Vaccine efficacy of a lysine auxotroph of Mycobacterium tuberculosis. Infect Immun 71, 4190–4192.[CrossRef]
    [Google Scholar]
  11. Sambandamurthy, V. K. & Jacobs, W. R., Jr ( 2005; ). Live attenuated mutants of Mycobacterium tuberculosis as candidate vaccines against tuberculosis. Microbes Infect 7, 955–961.[CrossRef]
    [Google Scholar]
  12. Sambandamurthy, V. K., Wang, X., Chen, B., Russell, R. G., Derrick, S., Collins, F. M., Morris, S. L. & Jacobs, W. R., Jr ( 2002; ). A pantothenate auxotroph of Mycobacterium tuberculosis is highly attenuated and protects mice against tuberculosis. Nat Med 8, 1171–1174.[CrossRef]
    [Google Scholar]
  13. Sambandamurthy, V. K., Derrick, S. C., Jalapathy, K. V., Chen, B., Russell, R. G., Morris, S. L. & Jacobs, W. R., Jr ( 2005; ). Long-term protection against tuberculosis following vaccination with a severely attenuated double lysine and pantothenate auxotroph of Mycobacterium tuberculosis. Infect Immun 73, 1196–1203.[CrossRef]
    [Google Scholar]
  14. Sampson, S. L., Dascher, C. C., Sambandamurthy, V. K., Russell, R. G., Jacobs, W. R., Jr, Bloom, B. R. & Hondalus, M. K. ( 2004; ). Protection elicited by a double leucine and pantothenate auxotroph of Mycobacterium tuberculosis in guinea pigs. Infect Immun 72, 3031–3037.[CrossRef]
    [Google Scholar]
  15. Senaratne, R. H., De Silva, A. D., Williams, S. J., Mougous, J. D., Reader, J. R., Zhang, T., Chan, S., Sidders, B., Lee, D. H. & other authors ( 2006; ). 5′-Adenosinephosphosulphate reductase (CysH) protects Mycobacterium tuberculosis against free radicals during chronic infection phase in mice. Mol Microbiol 59, 1744–1753.[CrossRef]
    [Google Scholar]
  16. Smith, D. A., Parish, T., Stoker, N. G. & Bancroft, G. J. ( 2001; ). Characterization of auxotrophic mutants of Mycobacterium tuberculosis and their potential as vaccine candidates. Infect Immun 69, 1142–1150.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.46983-0
Loading
/content/journal/jmm/10.1099/jmm.0.46983-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error