1887

Abstract

The potential pathogenicity of selected (potentially) probiotic and clinical isolates of and was investigated in a rat model of experimental endocarditis. In addition, adhesion properties of the lactobacilli for fibrinogen, fibronectin, collagen and laminin, as well as the killing activity of the platelet-microbicidal proteins fibrinopeptide A (FP-A) and connective tissue activating peptide 3 (CTAP-3), were assessed. The 90 % infective dose (ID) of the endocarditis isolates varied between 10 and 10 c.f.u., whereas four of the six (potentially) probiotic isolates showed an ID that was at least 10-fold higher (10 c.f.u.) (<0.001). In contrast, the two other probiotic isolates exhibited an ID (10 and 10 c.f.u.) comparable to the ID of the clinical isolates of this species investigated (>0.05). Importantly, these two probiotic isolates shared the same fluorescent amplified fragment length polymorphism cluster type as the clinical isolate showing the lowest ID (10 c.f.u.). tended to have a lower infectivity than (ID of 10 to ≥10 c.f.u.). All isolates had comparable bacterial counts in cardiac vegetations (>0.05). Except for one strain adhering to all substrates, all tested lactobacilli adhered only weakly or not at all. The platelet peptide FP-A did not show any microbicidal activity against the tested lactobacilli, whereas CTAP-3 killed the majority of the isolates. In general, these results indicate that probiotic lactobacilli display a lower infectivity in experimental endocarditis compared with true endocarditis pathogens. However, the difference in infectivity between endocarditis and (potentially) probiotic isolates could not be explained by differences in adherence or platelet microbicidal protein susceptibility. Other disease-promoting factors may exist in these organisms and warrant further investigation.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.46929-0
2007-08-01
2019-10-19
Loading full text...

Full text loading...

/deliver/fulltext/jmm/56/8/1017.html?itemId=/content/journal/jmm/10.1099/jmm.0.46929-0&mimeType=html&fmt=ahah

References

  1. Aguirre, M. & Collins, M. D. ( 1993; ). Lactic acid bacteria and human clinical infection. J Appl Bacteriol 75, 95–107.[CrossRef]
    [Google Scholar]
  2. Alvarez-Olmos, M. I. & Oberhelman, R. A. ( 2001; ). Probiotic agents and infectious diseases: a modern perspective on a traditional therapy. Clin Infect Dis 32, 1567–1576.[CrossRef]
    [Google Scholar]
  3. Asahara, T., Takahashi, M., Nomoto, K., Takayama, H., Onoue, M., Morotomi, M., Tanaka, R., Yokokura, T. & Yamashita, N. ( 2003; ). Assessment of safety of lactobacillus strains based on resistance to host innate defense mechanisms. Clin Diagn Lab Immunol 10, 169–173.
    [Google Scholar]
  4. Avlami, A., Kordossis, T., Vrizidis, N. & Sipsas, N. V. ( 2001; ). Lactobacillus rhamnosus endocarditis complicating colonoscopy. J Infect 42, 283–285.[CrossRef]
    [Google Scholar]
  5. Borriello, S. P., Hammes, W. P., Holzapfel, W., Marteau, P., Schrezenmeir, J., Vaara, M. & Valtonen, V. ( 2003; ). Safety of probiotics that contain lactobacilli or bifidobacteria. Clin Infect Dis 36, 775–780.[CrossRef]
    [Google Scholar]
  6. Brogden, K. A. ( 2005; ). Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? Nat Rev Microbiol 3, 238–250.[CrossRef]
    [Google Scholar]
  7. Bulet, P., Stocklin, R. & Menin, L. ( 2004; ). Anti-microbial peptides: from invertebrates to vertebrates. Immunol Rev 198, 169–184.[CrossRef]
    [Google Scholar]
  8. Cannon, J. P., Lee, T. A., Bolanos, J. T. & Danziger, L. H. ( 2005; ). Pathogenic relevance of Lactobacillus: a retrospective review of over 200 cases. Eur J Clin Microbiol Infect Dis 24, 31–40.[CrossRef]
    [Google Scholar]
  9. Carbon, C. ( 1993; ). Experimental endocarditis: a review of its relevance to human endocarditis. J Antimicrob Chemother 31, 71–85.[CrossRef]
    [Google Scholar]
  10. Carr, F. J., Chill, D. & Maida, N. ( 2002; ). The lactic acid bacteria: a literature survey. Crit Rev Microbiol 28, 281–370.[CrossRef]
    [Google Scholar]
  11. Dankert, J., van der Werff, J., Zaat, S. A., Joldersma, W., Klein, D. & Hess, J. ( 1995; ). Involvement of bactericidal factors from thrombin-stimulated platelets in clearance of adherent viridans streptococci in experimental infective endocarditis. Infect Immun 63, 663–671.
    [Google Scholar]
  12. Dellaglio, F., Felis, G. E. & Torriani, S. ( 2002; ). The status of the species Lactobacillus casei (Orla-Jensen 1916) Hansen and Lessel 1971 and Lactobacillus paracasei Collins et al. 1989. Request for an opinion. Int J Syst Evol Microbiol 52, 285–287.
    [Google Scholar]
  13. Dicks, L. M., Du Plessis, E. M., Dellaglio, F. & Lauer, E. ( 1996; ). Reclassification of Lactobacillus casei subsp. casei ATCC 393 and Lactobacillus rhamnosus ATCC 15820 as Lactobacillus zeae nom. rev., designation of ATCC 334 as the neotype of L. casei subsp. casei, and rejection of the name Lactobacillus paracasei. Int J Syst Bacteriol 46, 337–340.[CrossRef]
    [Google Scholar]
  14. Entenza, J. M., Moreillon, P., Senn, M. M., Kormanec, J., Dunman, P. M., Berger-Bachi, B., Projan, S. & Bischoff, M. ( 2005; ). Role of σ B in the expression of Staphylococcus aureus cell wall adhesins ClfA and FnbA and contribution to infectivity in a rat model of experimental endocarditis. Infect Immun 73, 990–998.[CrossRef]
    [Google Scholar]
  15. Fingold, S. M., Sutter, V. L. & Mathisen, G. E. ( 1983; ). Normal indigenous intestinal flora. In Human Intestinal Microflora in Health and Disease, pp. 3–31. Edited by D. J. Hentges. London: Academic Press.
  16. Fowler, V. G., Jr, McIntyre, L. M., Yeaman, M. R., Peterson, G. E., Barth, R. L., Corey, G. R., Wray, D. & Bayer, A. S. ( 2000; ). In vitro resistance to thrombin-induced platelet microbicidal protein in isolates of Staphylococcus aureus from endocarditis patients correlates with an intravascular device source. J Infect Dis 182, 1251–1254.[CrossRef]
    [Google Scholar]
  17. Gasser, F. ( 1994; ). Safety of lactic acid bacteria and their occurrence in human clinical infections. Bull Inst Pasteur 92, 45–67.
    [Google Scholar]
  18. Glauser, M. P., Bernard, J. P., Moreillon, P. & Francioli, P. ( 1983; ). Successful single-dose amoxicillin prophylaxis against experimental streptococcal endocarditis: evidence for two mechanisms of protection. J Infect Dis 147, 568–575.[CrossRef]
    [Google Scholar]
  19. Harty, D. W. S., Patrikakis, M. & Knox, K. W. ( 1993; ). Identification of Lactobacillus strains isolated from patients with infective endocarditis and comparison of their surface-associated properties with those of other strains of the same species. Microb Ecol Health Dis 6, 191–201.[CrossRef]
    [Google Scholar]
  20. Heraief, E., Glauser, M. P. & Freedman, L. R. ( 1982; ). Natural history of aortic valve endocarditis in rats. Infect Immun 37, 127–131.
    [Google Scholar]
  21. Husni, R. N., Gordon, S. M., Washington, J. A. & Longworth, D. L. ( 1997; ). Lactobacillus bacteremia and endocarditis: review of 45 cases. Clin Infect Dis 25, 1048–1055.[CrossRef]
    [Google Scholar]
  22. Huys, G., Vancanneyt, M., D'Haene, K., Vankerckhoven, V., Goossens, H. & Swings, J. ( 2006; ). Accuracy of species identity of commercial bacterial cultures intended for probiotic or nutritional use. Res Microbiol 157, 803–810.[CrossRef]
    [Google Scholar]
  23. Krijgsveld, J., Zaat, S. A., Meeldijk, J., van Veelen, P. A., Fang, G., Poolman, B., Brandt, E., Ehlert, J. E., Kuijpers, A. J. & other authors ( 2000; ). Thrombocidins, microbicidal proteins from human blood platelets, are C-terminal deletion products of CXC chemokines. J Biol Chem 275, 20374–20381.[CrossRef]
    [Google Scholar]
  24. Land, M. H., Rouster-Stevens, K., Woods, C. R., Cannon, M. L., Cnota, J. & Shetty, A. K. ( 2005; ). Lactobacillus sepsis associated with probiotic therapy. Pediatrics 115, 178–181.
    [Google Scholar]
  25. MacKay, A. D., Taylor, M. B., Kibbler, C. C. & Hamilton-Miller, J. M. ( 1999; ). Lactobacillus endocarditis caused by a probiotic organism. Clin Microbiol Infect 5, 290–292.[CrossRef]
    [Google Scholar]
  26. Mikelsaar, M. & Mändar, R. ( 1993; ). Development of individual lactic acid bacteria in the human microbial ecosystem. In Lactic Acid Bacteria, pp. 237–294. Edited by S. Salminen & A. von Wright. New York: Marcel Dekker.
  27. Moreillon, P. & Que, Y. A. ( 2004; ). Infective endocarditis. Lancet 363, 139–149.[CrossRef]
    [Google Scholar]
  28. Moreillon, P., Entenza, J. M., Francioli, P., McDevitt, D., Foster, T. J., Francois, P. & Vaudaux, P. ( 1995; ). Role of Staphylococcus aureus coagulase and clumping factor in pathogenesis of experimental endocarditis. Infect Immun 63, 4738–4743.
    [Google Scholar]
  29. Moreillon, P., Que, Y. A. & Bayer, A. S. ( 2002; ). Pathogenesis of streptococcal and staphylococcal endocarditis. Infect Dis Clin North Am 16, 297–318.[CrossRef]
    [Google Scholar]
  30. Oakey, H. J., Harty, D. W. & Knox, K. W. ( 1995; ). Enzyme production by lactobacilli and the potential link with infective endocarditis. J Appl Bacteriol 78, 142–148.[CrossRef]
    [Google Scholar]
  31. Presterl, E., Kneifel, W., Mayer, H. K., Zehetgruber, M., Makristathis, A. & Graninger, W. ( 2001; ). Endocarditis by Lactobacillus rhamnosus due to yogurt ingestion? Scand J Infect Dis 33, 710–714.[CrossRef]
    [Google Scholar]
  32. Que, Y. A., Francois, P., Haefliger, J. A., Entenza, J. M., Vaudaux, P. & Moreillon, P. ( 2001; ). Reassessing the role of Staphylococcus aureus clumping factor and fibronectin-binding protein by expression in Lactococcus lactis. Infect Immun 69, 6296–6302.[CrossRef]
    [Google Scholar]
  33. Que, Y. A., Haefliger, J. A., Piroth, L., Francois, P., Widmer, E., Entenza, J. M., Sinha, B., Herrmann, M., Francioli, P. & other authors ( 2005; ). Fibrinogen and fibronectin binding cooperate for valve infection and invasion in Staphylococcus aureus experimental endocarditis. J Exp Med 201, 1627–1635.[CrossRef]
    [Google Scholar]
  34. Rautio, M., Jousimies-Somer, H., Kauma, H., Pietarinen, I., Saxelin, M., Tynkkynen, S. & Koskela, M. ( 1999; ). Liver abscess due to a Lactobacillus rhamnosus strain indistinguishable from L. rhamnosus strain GG. Clin Infect Dis 28, 1159–1160.[CrossRef]
    [Google Scholar]
  35. Salminen, M. K., Tynkkynen, S., Rautelin, H., Saxelin, M., Vaara, M., Ruutu, P., Sarna, S., Valtonen, V. & Jarvinen, A. ( 2002; ). Lactobacillus bacteremia during a rapid increase in probiotic use of Lactobacillus rhamnosus GG in Finland. Clin Infect Dis 35, 1155–1160.[CrossRef]
    [Google Scholar]
  36. Salminen, M. K., Rautelin, H., Tynkkynen, S., Poussa, T., Saxelin, M., Valtonen, V. & Jarvinen, A. ( 2006; ). Lactobacillus bacteremia, species identification, and antimicrobial susceptibility of 85 blood isolates. Clin Infect Dis 42, e35–e44.[CrossRef]
    [Google Scholar]
  37. Schillinger, U., Guigas, C. & Holzapfel, W. H. ( 2005; ). In vitro adherence and other properties of lactobacilli used in probiotic yoghurt-like products. Int Dairy J 15, 1289–1297.[CrossRef]
    [Google Scholar]
  38. Soleman, N., Laferl, H., Kneifel, W., Tucek, G., Budschedl, E., Weber, H., Pichler, H. & Mayer, H. K. ( 2003; ). How safe is safe? – A case of Lactobacillus paracasei ssp. paracasei endocarditis and discussion of the safety of lactic acid bacteria. Scand J Infect Dis 35, 759–762.[CrossRef]
    [Google Scholar]
  39. Stutzmann Meier, P., Entenza, J. M., Vaudaux, P., Francioli, P., Glauser, M. P. & Moreillon, P. ( 2001; ). Study of Staphylococcus aureus pathogenic genes by transfer and expression in the less virulent organism Streptococcus gordonii. Infect Immun 69, 657–664.[CrossRef]
    [Google Scholar]
  40. Styriak, I., Nemcova, R., Chang, Y. H. & Ljungh, A. ( 2003; ). Binding of extracellular matrix molecules by probiotic bacteria. Lett Appl Microbiol 37, 329–333.[CrossRef]
    [Google Scholar]
  41. Tang, Y. Q., Yeaman, M. R. & Selsted, M. E. ( 2002; ). Antimicrobial peptides from human platelets. Infect Immun 70, 6524–6533.[CrossRef]
    [Google Scholar]
  42. Vancanneyt, M., Huys, G., Lefebvre, K., Vankerckhoven, V., Goossens, H. & Swings, J. ( 2006; ). Intraspecific genotypic characterization of Lactobacillus rhamnosus strains intended for probiotic use and isolates of human origin. Appl Environ Microbiol 72, 5376–5383.[CrossRef]
    [Google Scholar]
  43. Vankerckhoven, V., Van Autgaerden, T., Huys, G., Vancanneyt, M., Swings, J. & Goossens, H. ( 2004; ). Establishment of the PROSAFE collection of probiotic and human lactic acid bacteria. Microb Ecol Health Dis 16, 131–136.[CrossRef]
    [Google Scholar]
  44. WHO & FAO ( 2001; ). Health and Nutritional Properties of Probiotics in Food Including Powder Milk with Live Lactic Acid Bacteria. Report of a joint FAO/WHO expert consultation. Geneva: World Health.
  45. Yeaman, M. R. ( 1997; ). The role of platelets in antimicrobial host defense. Clin Infect Dis 25, 951–968.[CrossRef]
    [Google Scholar]
  46. Ze-Ze, L., Tenreiro, R., Duarte, A., Salgado, M. J., Melo-Cristino, J., Lito, L., Carmo, M. M., Felisberto, S. & Carmo, G. ( 2004; ). Case of aortic endocarditis caused by Lactobacillus casei. J Med Microbiol 53, 451–453.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.46929-0
Loading
/content/journal/jmm/10.1099/jmm.0.46929-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error