1887

Abstract

Emergence of the meticillin-resistant (MRSA) Barnim epidemic strain (ST22-MRSA-IV) was demonstrated recently at University Hospital in Magdeburg, Germany. To aid the study of transmission events, it is important to have an epidemiological typing method with the ability to distinguish among MRSA isolates. The aim of this study was to determine the ability of phenotypic and genotypic methods to type ST22-MRSA-IV strains within a hospital for microevolution events. Forty-two ST22-MRSA-IV strains collected from 2002 to 2005 were analysed using antimicrobial testing, toxin gene analysis, PFGE, typing, fluorescent amplified fragment length polymorphism (fAFLP) and determination of staphylococcal interspersed repeat units (SIRUs). Four different antimicrobial patterns were observed. The majority of the isolates (=31) were resistant towards erythromycin, ciprofloxacin and clindamycin, in addition to penicillin and oxacillin. All strains harboured the gene and showed a homogeneous profile of toxin genes. One isolate was typed as t022, two as t474 and the remainder belonged to type t032. PFGE yielded eight profiles and SIRU typing resulted in six different patterns. The fAFLP technique subdivided the individual PFGE profiles, but the grouping of isolates differed from that obtained by PFGE or SIRU typing. These results showed a diversity of ST22-MRSA-IV strains within a narrow clinical setting, indicating microevolution of the Barnim MRSA clone. The ability to distinguish among MRSA strains within an endemic setting will lead to a greater understanding of the transmission of MRSA and is necessary to be able to control the spread of various clones.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.46883-0
2007-03-01
2019-11-18
Loading full text...

Full text loading...

/deliver/fulltext/jmm/56/3/365.html?itemId=/content/journal/jmm/10.1099/jmm.0.46883-0&mimeType=html&fmt=ahah

References

  1. Bannermann, T. L., Hancock, G. A., Tenover, F. C. & Miller, J. M. ( 1995; ). Pulsed-field gel electrophoresis as a replacement for bacteriophage typing of Staphylococcus aureus. J Clin Microbiol 33, 551–555.
    [Google Scholar]
  2. Berger-Bächi, B. ( 2002; ). Resistance mechanisms of Gram-positive bacteria. Int J Med Microbiol 292, 27–35.[CrossRef]
    [Google Scholar]
  3. Betley, M. J. & Mekalanos, J. J. ( 1985; ). Staphylococcal enterotoxin A is encoded by phage. Science 229, 185–187.[CrossRef]
    [Google Scholar]
  4. Desai, M., Tanna, A., Wall, R., Efstratiou, A., George, R. & Stanley, J. ( 1998; ). Fluorescent amplified-fragment length polymorphism analysis of an outbreak of group A streptococcal invasive disease. J Clin Microbiol 36, 3133–3137.
    [Google Scholar]
  5. Enright, M. C., Day, N. P., Davies, C. E., Peacock, S. J. & Spratt, B. G. ( 2000; ). Multilocus sequence typing for characterization of methicillin-resistant and methicillin-susceptible clones of Staphylococcus aureus. J Clin Microbiol 38, 1008–1015.
    [Google Scholar]
  6. Enright, M. C., Robinson, D. A., Randle, G., Feil, E. J., Grundmann, H. & Spratt, B. G. ( 2002; ). The evolutionary history of methicillin-resistant Staphylococcus aureus (MRSA). Proc Natl Acad Sci U S A 99, 7687–7692.[CrossRef]
    [Google Scholar]
  7. Francois, P., Huyghe, A., Charbonnier, Y., Bento, M., Herzig, S., Topolski, I., Fleury, B., Lew, D., Vaudaux, P. & other authors ( 2005; ). Use of an automated multiple-locus, variable-number tandem repeat-based method for rapid and high-throughput genotyping of Staphylococcus aureus isolates. J Clin Microbiol 43, 3346–3355.[CrossRef]
    [Google Scholar]
  8. Ghebremedhin, B., König, W. & König, B. ( 2005; ). Heterogeneity of methicillin-resistant Staphylococcus aureus strains at a German university hospital during a 1-year period. Eur J Clin Microbiol Infect Dis 24, 388–398.[CrossRef]
    [Google Scholar]
  9. Grady, R., Desai, M., O'Neill, G., Cookson, B. & Stanley, J. ( 1999; ). Genotyping of epidemic methicillin-resistant Staphylococcus aureus phage type 15 isolates by fluorescent amplified-fragment length polymorphism analysis. J Clin Microbiol 37, 3198–3203.
    [Google Scholar]
  10. Grundmann, H., Hori, S., Enright, M. C., Webster, C., Tami, A., Feil, E. J. & Pitt, T. ( 2002; ). Determining the genetic structure of the natural population of Staphylococcus aureus: a comparison of multilocus sequence typing with pulsed-field gel electrophoresis, randomly amplified polymorphic DNA analysis, and phage typing. J Clin Microbiol 40, 4544–4546.[CrossRef]
    [Google Scholar]
  11. Hacker, J., Blum-Oehler, G., Mühldorfer, I. & Tschäpe, H. ( 1997; ). Pathogenicity islands of virulent bacteria: structure, function and impact on microbial evolution. Mol Microbiol 23, 1089–1097.[CrossRef]
    [Google Scholar]
  12. Hardy, K. J., Ussery, D. W., Oppenheim, B. A. & Hawkey, P. M. ( 2004; ). Distribution and characterization of staphylococcal interspersed repeat units (SIRUs) and potential use for strain differentiation. Microbiology 150, 4045–4052.[CrossRef]
    [Google Scholar]
  13. Hardy, K. J., Oppenheim, B. A., Gossain, S., Gao, F. & Hawkey, P. M. ( 2006; ). Use of variations in staphylococcal interspersed repeat units for molecular typing of methicillin-resistant Staphylococcus aureus strains. J Clin Microbiol 44, 271–273.[CrossRef]
    [Google Scholar]
  14. Harmsen, D., Claus, H., Witte, W., Rothgänger, J., Claus, H., Turnwald, D. & Vogel, U. ( 2003; ). Typing of methicillin-resistant Staphylococcus aureus in a university hospital setting by using novel software for spa repeat determination and database management. J Clin Microbiol 41, 5442–5448.[CrossRef]
    [Google Scholar]
  15. Hawkey, P. M., Smith, E. G., Evans, J. T., Monk, P., Bryan, G., Mohamed, H. H., Bardhan, M. & Pugh, R. N. ( 2003; ). Mycobacterial interspersed repetitive unit typing of Mycobacterium tuberculosis compared to IS6110-based restriction fragment length polymorphism analysis for investigation of apparently clustered cases of tuberculosis. J Clin Microbiol 41, 3514–3520.[CrossRef]
    [Google Scholar]
  16. Hookey, J. V., Edwards, V., Patel, S., Richardson, J. F. & Cookson, B. D. ( 1999; ). Use of fluorescent amplified fragment length polymorphism (fAFLP) to characterise methicillin-resistant Staphylococcus aureus. J Microbiol Methods 37, 7–15.[CrossRef]
    [Google Scholar]
  17. Hunter, P. R. ( 1990; ). Reproducibility and indices of discriminatory power of microbial typing methods. J Clin Microbiol 28, 1903–1905.
    [Google Scholar]
  18. Ito, T., Ma, X. X., Takeuchi, F., Okuma, K., Yuzawa, H. & Hiramatsu, K. ( 2004; ). Novel type V staphylococcal cassette chromosome mec driven by a novel cassette chromosome recombinase, ccrC. Antimicrob Agents Chemother 48, 2637–2651.[CrossRef]
    [Google Scholar]
  19. Ji, G., Beavis, R. C. & Novick, R. P. ( 1995; ). Cell density control of staphylococcal virulence mediated by an octapeptide pheromone. Proc Natl Acad Sci U S A 92, 12055–12059.[CrossRef]
    [Google Scholar]
  20. Ji, G., Beavis, R. C. & Novick, R. P. ( 1997; ). Bacterial interference caused by autoinducing peptide variants. Science 276, 2027–2030.[CrossRef]
    [Google Scholar]
  21. Katayama, Y., Ito, T. & Hiramatsu, K. ( 2000; ). A new class of genetic element, staphylococcus cassette chromosome mec, encodes methicillin resistance in Staphylococcus aureus. Antimicrob Agents Chemother 44, 1549–1555.[CrossRef]
    [Google Scholar]
  22. Lina, G., Boutite, F., Tristan, A., Bes, M., Etienne, J. & Vandenesch, F. ( 2003; ). Bacterial competition for human nasal cavity colonization: role of staphylococcal agr alleles. Appl Environ Microbiol 69, 18–23.[CrossRef]
    [Google Scholar]
  23. Lipsitch, M. ( 2001; ). The rise and fall of antimicrobial resistance. Trends Microbiol 9, 438–444.[CrossRef]
    [Google Scholar]
  24. Ma, X. X., Ito, T., Tiensasitorn, C., Jamklang, M., Chongtrakool, P., Boyle-Vavra, S., Daum, R. S. & Hiramatsu, K. ( 2002; ). Novel type of staphylococcal cassette chromosome mec identified in community-acquired methicillin-resistant Staphylococcus aureus strains. Antimicrob Agents Chemother 46, 1147–1152.[CrossRef]
    [Google Scholar]
  25. Malachowa, N., Sabat, A., Gniadkowski, M., Krzyszton-Russjan, J., Empel, J., Miedzobrodzki, J., Kosowska-Shick, K., Appelbaum, P. C. & Hryniewicz, W. ( 2005; ). Comparison of multiple-locus variable-number tandem-repeat analysis with pulsed-field gel electrophoresis, spa typing, and multilocus sequence typing for clonal characterization of Staphylococcus aureus isolates. J Clin Microbiol 43, 3095–3100.[CrossRef]
    [Google Scholar]
  26. Murchan, S., Kaufmann, M. E., Deplano, A., de Ryck, R., Struelens, M., Elsberg Zinn, C., Fussing, V., Salmenlinna, S., Vuopio-Varkila, J. & other authors ( 2003; ). Harmonization of pulsed-field gel electrophoresis protocols for epidemiological typing of strains of methicillin-resistant Staphylococcus aureus: a single approach developed by consensus in 10 European laboratories and its application for tracing the spread of related strains. J Clin Microbiol 41, 1574–1585.[CrossRef]
    [Google Scholar]
  27. Nair, S., Schreiber, E., Thong, K. L., Pang, T. & Altwegg, M. ( 2000; ). Genotypic characterization of Salmonella typhi by amplified fragment length polymorphism fingerprinting provides increased discrimination as compared to pulsed-field gel electrophoresis and ribotyping. J Microbiol Methods 41, 35–43.[CrossRef]
    [Google Scholar]
  28. Noller, A. C., McEllistrem, M. C., Pacheco, A. G., Boxrud, D. J. & Harrison, L. H. ( 2003; ). Multilocus variable-number tandem repeat analysis distinguishes outbreak and sporadic Escherichia coli O157 : H7 isolates. J Clin Microbiol 41, 5389–5397.[CrossRef]
    [Google Scholar]
  29. Okuma, K., Iwakawa, K., Turnidge, J. D., Grubb, W. B., Bell, J. M., O'Brien, F. G., Coombs, G. W., Pearman, J. W., Tenover, F. C. & other authors ( 2002; ). Dissemination of new methicillin-resistant Staphylococcus aureus clones in the community. J Clin Microbiol 40, 4289–4294.[CrossRef]
    [Google Scholar]
  30. Oliveira, D. C. & de Lencastre, H. ( 2002; ). Multiplex PCR strategy for rapid identification of structural types and variants of the mec element in methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother 46, 2155–2161.[CrossRef]
    [Google Scholar]
  31. O'Neill, G. L., Murchan, S., Gil-Setas, A. & Aucken, H. M. ( 2001; ). Identification and characterization of phage variants of a strain of epidemic methicillin-resistant Staphylococcus aureus (EMRSA-15). J Clin Microbiol 39, 1540–1548.[CrossRef]
    [Google Scholar]
  32. Onteniente, L., Brisse, S., Tassios, P. T. & Vergnaud, G. ( 2003; ). Evaluation of the polymorphisms associated with tandem repeats for Pseudomonas aeruginosa strain typing. J Clin Microbiol 41, 4991–4997.[CrossRef]
    [Google Scholar]
  33. Peacock, S. J., de Silva, G. D., Justice, A., Cowland, A., Moore, C. E., Winearls, C. G. & Day, N. P. ( 2002; ). Comparison of multilocus sequence typing and pulsed-field gel electrophoresis as tools for typing Staphylococcus aureus isolates in a microepidemiological setting. J Clin Microbiol 40, 3764–3770.[CrossRef]
    [Google Scholar]
  34. Robinson, D. A. & Enright, M. C. ( 2003; ). Evolutionary models of the emergence of methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother 47, 3926–3934.[CrossRef]
    [Google Scholar]
  35. Shore, A., Rossney, A. S., Keane, C. T., Enright, M. C. & Coleman, D. C. ( 2005; ). Seven novel variants of the staphylococcal chromosomal cassette mec in methicillin-resistant Staphylococcus aureus isolates from Ireland. Antimicrob Agents Chemother 49, 2070–2083.[CrossRef]
    [Google Scholar]
  36. Strommenger, B., Cuny, C., Werner, G. & Witte, W. ( 2004; ). Obvious lack of association between dynamics of epidemic methicillin-resistant Staphylococcus aureus in central Europe and agr specificity groups. Eur J Clin Microbiol Infect Dis 23, 15–19.[CrossRef]
    [Google Scholar]
  37. Tang, Y.-W., Waddington, M. G., Smith, D. H., Manahan, J. M., Kohner, P. C., Highsmith, L. M., Li, H., Cockerill, F. R., III, Thompson, R. L. & other authors ( 2000; ). Comparison of protein A gene sequencing with pulsed-field gel electrophoresis and epidemiologic data for molecular typing of methicillin-resistant Staphylococcus aureus. J Clin Microbiol 38, 1347–1351.
    [Google Scholar]
  38. Tenover, F. C., Arbeit, R. D., Goering, R. V., Mickelsen, P. A., Murray, B. E., Persing, D. H. & Swaminathan, B. ( 1995; ). Interpreting chromosomal DNA restriction patterns produced by pulsed-field gel electrophoresis: criteria for bacterial strain typing. J Clin Microbiol 33, 2233–2239.
    [Google Scholar]
  39. Thyssen, A., van Eygen, S., Hauben, L., Goris, J., Swings, J. & Ollevier, F. ( 2000; ). Application of AFLP for taxonomic and epidemiological studies of Photobacterium damselae subsp. piscicida. Int J Syst Evol Microbiol 50, 1013–1019.[CrossRef]
    [Google Scholar]
  40. Urwin, R. & Maiden, M. C. J. ( 2003; ). Multi-locus sequence typing: a tool for global epidemiology. Trends Microbiol 11, 479–487.[CrossRef]
    [Google Scholar]
  41. van Belkum, A. ( 1999; ). The role of short sequence repeats in epidemiologic typing. Curr Opin Microbiol 2, 306–311.[CrossRef]
    [Google Scholar]
  42. van den Braak, N., Simons, G., Gorkink, R., Reijans, M., Eadie, K., Kremers, K., van Soolingen, D., Savelkoul, P., Verbrugh, H. & van Belkum, A. ( 2004; ). A new high-throughput AFLP approach for identification of new genetic polymorphism in the genome of the clonal microorganism Mycobacterium tuberculosis. J Microbiol Methods 56, 49–62.[CrossRef]
    [Google Scholar]
  43. Witte, W., Enright, M., Schmitz, F. J., Cuny, C., Braulke, C. & Heuck, D. ( 2001; ). Characteristics of a new epidemic MRSA in Germany ancestral to United Kingdom EMRSA 15. Int J Med Microbiol 290, 677–682.[CrossRef]
    [Google Scholar]
  44. Witte, W., Cuny, C., Strommenger, B., Braulke, C. & Heuck, D. ( 2004; ). Emergence of a new community acquired MRSA strain in Germany. Euro Surveill 9, 16–18.
    [Google Scholar]
  45. Zetola, N., Francis, J. S., Nuermberger, E. L. & Bishai, W. R. ( 2005; ). Community-acquired meticillin-resistant Staphylococcus aureus: an emerging threat. Lancet Infect Dis 5, 275–286.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.46883-0
Loading
/content/journal/jmm/10.1099/jmm.0.46883-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error