1887

Abstract

is an obligate intracellular respiratory pathogen that has been associated with pneumonia and chronic bronchitis, atherosclerosis, asthma and other chronic diseases in humans. However, is not restricted to humans, as originally thought, and can cause infections in several animal hosts. was isolated in cell culture from nine Western barred bandicoots () from Australia. The sequences of five genomic regions were determined, including full-length sequences of the16S rRNA and genes and the intergenic spacer, and partial sequences of the 23S rRNA and genes. Sequence analysis of the entire 16S rRNA and genes from bandicoot isolates demonstrated that they were 98.2–98.3 % similar to human isolates, 94.6–99.3 % similar to the equine biovar and almost identical, with 99.5–99.9 % similarity, to the koala biovar. Comparative genotyping of the variable domain 4 region of the gene demonstrated that bandicoot isolates seemed to be identical to the animal genotype that has been recently identified in human carotid plaque specimens. Minor sequence polymorphism observed in , 16S rRNA and genes of animal isolates, indicating genomic diversity within , may have important implications for diagnostic PCR assays leading to false negative results. Forty percent of selected published species-specific PCR assays were found to have sequence variability in primer and/or probe that might affect their performance in detecting bandicoot isolates of , or possibly other animal and human strains where minor sequence polymorphisms may be present. The data from this study support the previous observations that is not restricted to humans and may be widespread in an animal reservoir with a potential risk of transmission to humans.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.46850-0
2007-03-01
2019-11-17
Loading full text...

Full text loading...

/deliver/fulltext/jmm/56/3/407.html?itemId=/content/journal/jmm/10.1099/jmm.0.46850-0&mimeType=html&fmt=ahah

References

  1. Apfalter, P., Barousch, W., Nehr, M., Makristathis, A., Willinger, B., Rotter, M. & Hirschl, A. M. ( 2003; ). Comparison of a new quantitative ompA-based real-time PCR TaqMan assay for detection of Chlamydia pneumoniae DNA in respiratory specimens with four conventional PCR assays. J Clin Microbiol 41, 592–600.[CrossRef]
    [Google Scholar]
  2. Balin, B. J., Gerard, H. C., Arking, E. J., Appelt, D. M., Branigan, P. J., Abrams, J. T., Whittum-Hudson, J. A. & Hudson, A. P. ( 1998; ). Identification and localization of Chlamydia pneumoniae in the Alzheimer's brain. Med Microbiol Immunol 187, 23–42.[CrossRef]
    [Google Scholar]
  3. Berger, L., Volp, K., Mathews, S., Speare, R. & Timms, P. ( 1999; ). Chlamydia pneumoniae in a free-ranging giant barred frog (Mixophyes iteratus) from Australia. J Clin Microbiol 37, 2378–2380.
    [Google Scholar]
  4. Blasi, F., Tarsia, P., Arosio, C., Fagetti, L. & Allegra, L. ( 1998; ). Epidemiology of Chlamydia pneumoniae. Clin Microbiol Infect 4 (Suppl.), S1–S6.[CrossRef]
    [Google Scholar]
  5. Blasi, F., Damato, S., Cosentini, R., Tarsia, P., Raccanelli, R., Centanni, S., Allegra, L. & the Chlamydia InterAction with C.O. P. D. (C. I. A. C.) Study Group ( 2002; ). Chlamydia pneumoniae and chronic bronchitis: association with severity and bacterial clearance following treatment. Thorax 57, 672–676.[CrossRef]
    [Google Scholar]
  6. Bodetti, T. J., Jacobson, E., Wan, C., Hafner, L., Pospischil, A., Rose, K. & Timms, P. ( 2002; ). Molecular evidence to support the expansion of the hostrange of Chlamydophila pneumoniae to include reptiles as well as humans, horses, koalas and amphibians. Syst Appl Microbiol 25, 146–152.[CrossRef]
    [Google Scholar]
  7. Bodetti, T. J., Viggers, K., Warren, K., Swan, R., Conaghty, S., Sims, C. & Timms, P. ( 2003; ). Wide range of Chlamydiales types detected in native Australian mammals. Vet Microbiol 96, 177–187.[CrossRef]
    [Google Scholar]
  8. Campbell, L. A., Melgosa, M. P., Hamilton, D. J., Kuo, C.-C. & Grayston, J. T. ( 1992; ). Detection of Chlamydia pneumoniae by polymerase chain reaction. J Clin Microbiol 30, 434–439.
    [Google Scholar]
  9. Canderle, J., Pospisil, L., Stroblova, H. & Veznik, Z. ( 2005; ). Chlamydophila pneumoniae antibodies in swine. Acta Vet 74, 81–86.[CrossRef]
    [Google Scholar]
  10. Carter, M. W., al-Mahdawi, S. A., Giles, I. G., Treharne, J. D., Ward, M. E. & Clark, I. N. ( 1991; ). Nucleotide sequence and taxonomic value of the major outer membrane protein gene of Chlamydia pneumoniae IOL-207. J Gen Microbiol 137, 465–475.[CrossRef]
    [Google Scholar]
  11. Cochrane, M., Walker, P., Gibbs, H. & Timms, P. ( 2005; ). Multiple genotypes of Chlamydia pneumoniae identified in human carotid plaque. Microbiology 151, 2285–2290.[CrossRef]
    [Google Scholar]
  12. Coles, K. A., Timms, P. & Smith, D. W. ( 2001; ). Koala biovar of Chlamydia pneumoniae infects human and koala monocytes and induces increased uptake of lipids in vitro. Infect Immun 69, 7894–7897.[CrossRef]
    [Google Scholar]
  13. Dowell, S. F., Peeling, R. W., Boman, J., Carlone, G. M., Fields, B. S., Guarner, J., Hammerschlag, M. R., Jackson, L. A., Kuo, C.-C. & other authors ( 2001; ). Standardizing Chlamydia pneumoniae assays: recommendations from the Centers for Disease Control and Prevention (USA) and the Laboratory Centre for Disease Control (Canada). Clin Infect Dis 33, 492–503.[CrossRef]
    [Google Scholar]
  14. Essig, A., Heinemann, M., Simnacher, U. & Marre, R. ( 1997; ). Infection of Acanthamoeba castellanii by Chlamydia pneumoniae. Appl Environ Microbiol 63, 1396–1399.
    [Google Scholar]
  15. Everett, K. D., Bush, R. M. & Andersen, A. A. ( 1999a; ). Emended description of the order Chlamydiales, proposal of Parachlamydiaceae fam. nov. and Simkaniaceae fam. nov., each containing one monotypic genus, revised taxonomy of the family Chlamydiaceae, including a new genus and five new species, and standards for the identification of organisms. Int J Syst Bacteriol 49, 415–440.[CrossRef]
    [Google Scholar]
  16. Everett, K. D., Hornung, L. J. & Andersen, A. A. ( 1999b; ). Rapid detection of the Chlamydiaceae and other families in the order Chlamydiales: three PCR tests. J Clin Microbiol 37, 575–580.
    [Google Scholar]
  17. Gaydos, C. A., Quinn, T. C. & Eiden, J. J. ( 1992; ). Identification of Chlamydia pneumoniae by DNA amplification of the 16S rRNA gene. J Clin Microbiol 30, 796–800.
    [Google Scholar]
  18. Girjes, A. A., Carrick, F. N. & Lavin, M. F. ( 1994; ). Remarkable sequence relatedness in the DNA encoding the major outer membrane protein of Chlamydia psittaci (koala type I) and Chlamydia pneumoniae. Gene 138, 139–142.[CrossRef]
    [Google Scholar]
  19. Hahn, D. L., Dodge, R. W. & Golubjatnikov, R. ( 1991; ). Association of Chlamydia pneumoniae (strain TWAR) infection with wheezing, asthmatic bronchitis, and adult-onset asthma. JAMA 266, 225–230.[CrossRef]
    [Google Scholar]
  20. Hardick, J., Maldeis, N., Theodore, M., Wood, B. J., Yang, S., Lin, S., Quinn, T. & Gaydos, C. ( 2004; ). Real-time PCR for Chlamydia pneumoniae utilizing the Roche Lightcycler and a 16S rRNA gene target. J Mol Diagn 6, 132–136.[CrossRef]
    [Google Scholar]
  21. Hotzel, H., Grossmann, E., Mutschmann, F. & Sachse, K. ( 2001; ). Genetic characterization of a Chlamydophila pneumoniae isolate from an African frog and comparison to currently accepted biovars. Syst Appl Microbiol 24, 63–66.[CrossRef]
    [Google Scholar]
  22. Jacobson, E. R., Heard, D. & Andersen, A. ( 2004; ). Identification of Chlamydophila pneumoniae in an emerald tree boa, Corallus caninus. J Vet Diagn Invest 16, 153–154.[CrossRef]
    [Google Scholar]
  23. Kalman, S., Mitchell, W., Marathe, R., Lammel, C., Fan, J., Hyman, R. W., Olinger, L., Grimwood, J., Davis, R. W. & Stephens, R. ( 1999; ). Comparative genomes of Chlamydia pneumoniae and C. trachomatis. Nat Genet 21, 385–389.[CrossRef]
    [Google Scholar]
  24. Kaltenboeck, B., Kousoulas, K. G. & Storz, J. ( 1993; ). Structures of and allelic diversity and relationships among the major outer membrane protein (ompA) genes of the four chlamydial species. J Bacteriol 175, 487–502.
    [Google Scholar]
  25. Kohlhepp, S. J., Hardick, J. & Gaydos, C. ( 2005; ). Chlamydia pneumoniae in peripheral blood mononuclear cells isolated from individuals younger than 20 years or older than 60 years. J Clin Microbiol 43, 3030.[CrossRef]
    [Google Scholar]
  26. Kuoppa, Y., Boman, J., Scott, L., Kumlin, U., Eriksson, I. & Allard, A. ( 2002; ). Quantitative detection of respiratory Chlamydia pneumoniae infection by real-time PCR. J Clin Microbiol 40, 2273–2274.[CrossRef]
    [Google Scholar]
  27. Kwok, S., Kellogg, D. E., McKinney, N., Spasic, D., Goda, L., Levenson, C. & Sninsky, J. J. ( 1990; ). Effects of primer-template mismatches on the polymerase chain reaction: human immunodeficiency virus type 1 model studies. Nucleic Acids Res 18, 999–1005.[CrossRef]
    [Google Scholar]
  28. Lindholt, J. S., Ostergard, L., Henneberg, E. W., Fasting, H. & Andersen, P. ( 1998; ). Failure to demonstrate Chlamydia pneumoniae in symptomatic abdominal aortic aneurysms by a nested polymerase chain reaction (PCR). Eur J Vasc Endovasc Surg 15, 161–164.[CrossRef]
    [Google Scholar]
  29. Loens, K., Beck, T., Ursi, D., Pattyn, S., Goossens, H. & Ieven, M. ( 2006; ). Two quality control exercises involving nucleic acid amplification methods for detection of Mycoplasma pneumoniae and Chlamydophila pneumoniae and carried out 2 years apart (in 2002 and 2004). J Clin Microbiol 44, 899–908.[CrossRef]
    [Google Scholar]
  30. Madico, G. E., Quinn, T. C., Boman, J. & Gaydos, C. A. ( 2000; ). Touchdown enzyme time release PCR for detection and identification of Chlamydia tracomatis, C. pneumoniae, and C. psittaci using the 16S and 16S–23S spacer rRNA genes. J Clin Microbiol 38, 1085–1093.
    [Google Scholar]
  31. Meijer, A., van der Vliet, J. A., Schouls, L. M., de Vries, A., Roholl, P. J. & Ossewaarde, J. M. ( 1998; ). Detection of microorganisms in vessel wall specimens of the abdominal aorta: development of a PCR assay in the absence of a gold standard. Res Microbiol 149, 577–583.[CrossRef]
    [Google Scholar]
  32. Peeling, R. W. & Brunham, R. C. ( 1996; ). Chlamydiae as pathogens: new species and new issues. Emerg Infect Dis 2, 307–319.[CrossRef]
    [Google Scholar]
  33. Read, T. D., Brunham, R. C., Shen, C., Gill, S. R., Heidelberg, J. F., White, O., Hickey, E. K., Peterson, J., Utterback, T. & other authors ( 2000; ). Genome sequences of Chlamydia trachomatis MoPn and Chlamydia pneumoniae AR39. Nucleic Acids Res 28, 1397–1406.[CrossRef]
    [Google Scholar]
  34. Reed, K. D., Ruth, G. R., Meyer, J. A. & Shukla, S. K. ( 2000; ). Chlamydia pneumoniae infection in a breeding colony of African clawed frogs (Xenopus tropicalis). Emerg Infect Dis 6, 196–199.[CrossRef]
    [Google Scholar]
  35. Roblin, P. M., Dumornay, W. & Hammerschlag, M. R. ( 1992; ). Use of HEp-2 cells for improved isolation and passage of Chlamydia pneumoniae. J Clin Microbiol 30, 1968–1971.
    [Google Scholar]
  36. Rodríguez-Lázaro, D., Hernández, M., Scortti, M., Esteve, T., Vázquez-Bolan, J. A. & Pla, M. ( 2004; ). Quantitative detection of Listeria monocytogenes and Listeria innocua by real-time PCR: assessment of hly, iap, and lin02483 targets and AmpliFluor technology. Appl Environ Microbiol 70, 1366–1377.[CrossRef]
    [Google Scholar]
  37. Rozen, S. & Skaletsky, H. J. ( 2000; ). Primer3 on the WWW for general users and for biologist programmers. In Bioinformatics Methods and Protocols: Methods in Molecular Biology, pp. 365–386. Edited by S. Krawetz & S. Misener. Totowa, NJ: Humana Press.
  38. Sako, T., Takahashi, T., Takehana, K., Uchida, E., Nakade, T., Umemura, T. & Taniyama, H. ( 2002; ). Chlamydial infection in canine atherosclerotic lesions. Atherosclerosis 162, 253–259.[CrossRef]
    [Google Scholar]
  39. Shirai, M., Hirakawa, H., Kimoto, M., Tabuchi, M., Kishi, F., Ouchi, K., Shiba, T., Ishii, K., Hattori, M. & other authors ( 2000; ). Comparison of whole genome sequences of Chlamydia pneumoniae J138 from Japan and CWL029 from USA . Nucleic Acids Res 28, 2311–2314.[CrossRef]
    [Google Scholar]
  40. Sriram, S., Mitchell, W. & Stratton, C. ( 1998; ). Multiple sclerosis associated with Chlamydia pneumoniae infection of the CNS. Neurology 50, 571–572.[CrossRef]
    [Google Scholar]
  41. Stevenson, J., Hymas, W. & Hillyard, D. ( 2005; ). Effect of sequence polymorphisms on performance of two real-time PCR assays for detection of herpes simplex virus. J Clin Microbiol 43, 2391–2398.[CrossRef]
    [Google Scholar]
  42. Storey, C., Lusher, M., Yates, P. & Richmond, S. ( 1993; ). Evidence for Chlamydia pneumoniae of non-human origin. J Gen Microbiol 139, 2621–2626.[CrossRef]
    [Google Scholar]
  43. Tatusova, T. A. & Madden, T. L. ( 1999; ). Blast 2 sequences – a new tool for comparing protein and nucleotide sequences. FEMS Microbiol Lett 174, 247–250.[CrossRef]
    [Google Scholar]
  44. Templeton, K. E., Scheltingha, S. A., Van den Eeden, W. C. J. F. M., Graffelman, A. W., van den Broek, P. H. & Claas, E. ( 2005; ). Improved diagnosis of etiology of community-acquired pneumonia using real-time PCR. Clin Infect Dis 41, 345–351.[CrossRef]
    [Google Scholar]
  45. Tondella, M. L., Talkington, D. F., Holloway, B. P., Dowell, S. F., Cowley, K., Soriano-Gabarro, M., Elkind, M. S. & Fields, B. S. ( 2002; ). Development and evaluation of real-time PCR-based fluorescence assays for detection of Chlamydia pneumoniae. J Clin Microbiol 40, 575–583.[CrossRef]
    [Google Scholar]
  46. Tong, C. Y. & Sillis, M. ( 1993; ). Detection of Chlamydia pneumoniae and Chlamydia psittaci in sputum samples by PCR. J Clin Pathol 46, 313–317.[CrossRef]
    [Google Scholar]
  47. Wardrop, S., Fowler, A. O'Callaghan P., Giffard, P. & Timms, P. ( 1999; ). Characterization of the koala biovar of Chlamydia pneumoniae at four gene loci – ompAVD4, ompB, 16S rRNA, groESL spacer region. Syst Appl Microbiol 22, 22–27.[CrossRef]
    [Google Scholar]
  48. Warren, K., Swan, R., Bodetti, T., Friend, T., Hill, S. & Timms, P. ( 2005; ). Ocular Chlamydiales infections of Western barred bandicoots (Perameles bougainville) in Western Australia. J Zoo Wildl Med 36, 100–102.[CrossRef]
    [Google Scholar]
  49. Welti, M., Jaton, K., Altwegg, M., Sahli, R., Wenger, A. & Bille, J. ( 2003; ). Development of a multiplex real-time quantitative PCR assay to detect Chlamydia pneumoniae, Legionella pneumophila, and Mycoplasma pneumoniae in respiratory tract secretions. Diagn Microbiol Infect Dis 45, 85–95.[CrossRef]
    [Google Scholar]
  50. Wilson, P. A., Phipps, J., Samuel, D. & Saunders, N. A. ( 1996; ). Development of a simplified polymerase chain reaction-enzyme immunoassay for the detection of Chlamydia pneumoniae. J Appl Bacteriol 80, 431–438.[CrossRef]
    [Google Scholar]
  51. Wong, Y. K., Gallagher, P. J. & Ward, M. E. ( 1999; ). Chlamydia pneumoniae and atherosclerosis. Heart 81, 232–223.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.46850-0
Loading
/content/journal/jmm/10.1099/jmm.0.46850-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error