1887

Abstract

This study evaluated a novel peptide nucleic acid (PNA) probe targeting a region of the 23S rRNA gene of by fluorescence hybridization (FISH). Analytical performance was determined using 39 reference strains and other well-characterized strains of spp. and . The probe was found to be specific for the complex ( including and ). The diagnostic accuracy was evaluated with 264 blood cultures containing Gram-negative rods. Using conventional identification as the reference, performance specifications were as follows: sensitivity 98.8 %, specificity 99.5 %, positive predictive value 98.8 % and negative predictive value 99.5 %. Discrepancies were resolved by PNA FISH retest and phenotypic tests. In conclusion, the probe provided an accurate diagnosis within 3 h and may supplement other methods for direct identification of Gram-negative bacteria.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.46829-0
2007-07-01
2019-10-19
Loading full text...

Full text loading...

/deliver/fulltext/jmm/56/7/914.html?itemId=/content/journal/jmm/10.1099/jmm.0.46829-0&mimeType=html&fmt=ahah

References

  1. Bascomb, S., Lapage, S. P., Willcox, W. R. & Curtis, M. A. ( 1971; ). Numerical classification of the tribe Klebsielleae. J Gen Microbiol 66, 279–295.[CrossRef]
    [Google Scholar]
  2. Boye, K. & Hansen, D. S. ( 2003; ). Sequencing of 16S rDNA of Klebsiella: taxonomic relations within the genus and to other Enterobacteriaceae. Int J Med Microbiol 292, 495–503.[CrossRef]
    [Google Scholar]
  3. Brisse, S. & Verhoef, J. ( 2001; ). Phylogenetic diversity of Klebsiella pneumoniae and Klebsiella oxytoca clinical isolates revealed by randomly amplified polymorphic DNA, gyrA and parC genes sequencing and automated ribotyping. Int J Syst Evol Microbiol 51, 915–924.[CrossRef]
    [Google Scholar]
  4. Brisse, S., van Himbergen, T., Kusters, K. & Verhoef, J. ( 2004; ). Development of a rapid identification method for Klebsiella pneumoniae phylogenetic groups and analysis of 420 clinical isolates. Clin Microbiol Infect 10, 942–945.[CrossRef]
    [Google Scholar]
  5. Feldman, C., Smith, C., Levy, H., Ginsburg, P., Miller, S. D. & Koornhof, H. J. ( 1990; ). Klebsiella pneumoniae bacteraemia at an urban general hospital. J Infect 20, 21–31.[CrossRef]
    [Google Scholar]
  6. Hansen, D. S., Gottschau, A. & Kolmos, H. J. ( 1998; ). Epidemiology of Klebsiella bacteraemia: a case control study using Escherichia coli bacteraemia as control. J Hosp Infect 38, 119–132.[CrossRef]
    [Google Scholar]
  7. Hansen, D. S., Aucken, H. M., Abiola, T. & Podschun, R. ( 2004; ). Recommended test panel for differentiation of Klebsiella species on the basis of a trilateral interlaboratory evaluation of 18 biochemical tests. J Clin Microbiol 42, 3665–3669.[CrossRef]
    [Google Scholar]
  8. Kempf, V. A., Trebesius, K. & Autenrieth, I. B. ( 2000; ). Fluorescent in situ hybridization allows rapid identification of microorganisms in blood cultures. J Clin Microbiol 38, 830–838.
    [Google Scholar]
  9. Laupland, K. B., Davies, H. D., Church, D. L., Louie, T. J., Dool, J. S., Zygun, D. A. & Doig, C. J. ( 2004; ). Bloodstream infection-associated sepsis and septic shock in critically ill adults: a population-based study. Infection 32, 59–64.[CrossRef]
    [Google Scholar]
  10. Liu, Y., Mee, B. J. & Mulgrave, L. ( 1997; ). Identification of clinical isolates of indole-positive Klebsiella spp., including Klebsiella planticola, and a genetic and molecular analysis of their β-lactamases. J Clin Microbiol 35, 2365–2369.
    [Google Scholar]
  11. Ludwig, W., Rossello-Mora, R., Aznar, R., Klugbauer, S., Spring, S., Reetz, K., Beimfohr, C., Brockmann, E., Kirchhof, G. & other authors ( 1995; ). Comparative sequence analysis of 23S rRNA from proteobacteria. Syst Appl Microbiol 18, 164–188.[CrossRef]
    [Google Scholar]
  12. Oliveira, K., Procop, G. W., Wilson, D., Coull, J. & Stender, H. ( 2002; ). Rapid identification of Staphylococcus aureus directly from blood cultures by fluorescence in situ hybridization with peptide nucleic acid probes. J Clin Microbiol 40, 247–251.[CrossRef]
    [Google Scholar]
  13. Panceri, M. L., Vegni, F. E., Goglio, A., Manisco, A., Tambini, R., Lizioli, A., Porretta, A. D. & Privitera, G. ( 2004; ). Aetiology and prognosis of bacteraemia in Italy. Epidemiol Infect 132, 647–654.[CrossRef]
    [Google Scholar]
  14. Pedersen, G., Schønheyder, H. C. & Sørensen, H. T. ( 2003; ). Source of infection and other factors associated with case fatality in community-acquired bacteremia – a Danish population-based cohort study from 1992 to 1997. Clin Microbiol Infect 9, 793–802.[CrossRef]
    [Google Scholar]
  15. Podschun, R., Pietsch, S., Holler, C. & Ullmann, U. ( 2001; ). Incidence of Klebsiella species in surface waters and their expression of virulence factors. Appl Environ Microbiol 67, 3325–3327.[CrossRef]
    [Google Scholar]
  16. Rigby, S., Procop, G. W., Haase, G., Wilson, D., Hall, G., Kurtzman, C., Oliveira, K., Von Oy, S., Hyldig-Nielsen, J. J. & other authors ( 2002; ). Fluorescence in situ hybridization with peptide nucleic acid probes for rapid identification of Candida albicans directly from blood culture bottles. J Clin Microbiol 40, 2182–2186.[CrossRef]
    [Google Scholar]
  17. Rosenblueth, M., Martinez, L., Silva, J. & Martinez-Romero, E. ( 2004; ). Klebsiella variicola, a novel species with clinical and plant-associated isolates. Syst Appl Microbiol 27, 27–35.[CrossRef]
    [Google Scholar]
  18. Søgaard, M., Stender, H. & Schønheyder, H. C. ( 2005; ). Direct identification of major blood culture pathogens, including Pseudomonas aeruginosa and Escherichia coli, by a panel of fluorescence in situ hybridization assays using peptide nucleic acid probes. J Clin Microbiol 43, 1947–1949.[CrossRef]
    [Google Scholar]
  19. Westbrook, G. L., O'Hara, C. M., Roman, S. B. & Miller, J. M. ( 2000; ). Incidence and identification of Klebsiella planticola in clinical isolates with emphasis on newborns. J Clin Microbiol 38, 1495–1497.
    [Google Scholar]
  20. Wilks, S. A. & Keevil, C. W. ( 2006; ). Targeting sequence-specific low-affinity 16S rRNA binding sites by using peptide nucleic acids for detection of legionellae in biofilms. Appl Environ Microbiol 72, 5453–5462.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.46829-0
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error